Lesión cerebral post paro cardiaco: aspectos médicos, éticos y legales
PDF
XML

Palabras clave

paro cardiaco
hipoxia encefálica
pronóstico
muerte encefálica
ética (DeCS)

Resumen

Los sobrevivientes de la reanimación cardiopulmonar posterior a un paro cardiaco pueden tener un amplio rango de desenlaces y van desde recuperación neurológica completa, estado de vigilia sin respuesta, compromiso cognoscitivo diverso o la muerte.

La lesión del tejido cerebral se presenta inmediatamente después del paro cardíaco, durante la reanimación y al retornar la circulación espontánea. La severidad y duración de la noxa isquémica determinarán el devenir neurológico. El examen clínico es el punto de partida en el abordaje multimodal del neuropronóstico. Se debe complementar con electroencefalograma, potenciales evocados somatosensoriales, neuroimágenes y biomar-cadores séricos.

Entre un 10 a 15% de los pacientes con lesión cerebral posterior al paro cardiaco evolucionan hacia muerte por criterios neurológicos y son potenciales candidatos a la donación de órganos. Un retiro temprano de las terapias de sostenimiento de vida puede malograr la posibilidad de un potencial donante de órganos. Se puede estimar de manera temprana qué pacientes tienen mayor riesgo de evolucionar a muerte por criterios neurológicos.

El neurólogo tiene un papel protagónico en el manejo de pacientes con lesión cerebral post paro cardiaco y sus decisiones tienen implicaciones éticas y legales.

https://doi.org/10.22379/anc.v39i1.889

PDF
XML

Citas

Navarro-Vargas JR. Registro de paro cardiaco en el adulto. Rev Fac Med 2005;53(3):196-203.

Gräsner JT, Wnent J, Herlitz J, Perkins GD, Lefering R, Tjelmeland I et al. Survival after out-of-hospital cardiac arrest in Europe: Results of the EuReCa TWO Study. Resuscitation 2020;148:218-26.

Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW et al. Heart disease and stroke statistics: 2021 Update. A Report From the American Heart Association. Circulation 2021;143:e254-e743.

Sandroni C, Cronbetg T, Sekhon M. Brain injury after cardiac arrest: pathophysiology, treatment and prognosis. Intensive Care Med 2021;47:1393-1414

Liotta EM. Management of Cerebral Edema, Brain Compression, and Intracraneal Pressure. Continuum (Minneap Minn) 2021;5:1172-1200

Pana R, Hornby L, Shemie SD, Dhanani S, Teitelbaum J. Time to loss brain function and activity during circulatory arrest. J Crit Care 2016;34:77-83.

Nolan JP, Sandroni C, Bõttiger BW, Cariou A, Cronberg T, Friberg H et al. European Resuscitation Council and European Society of Intensive Care Medicine guidelines 2021: post-resuscitation care. Intensive Care Med. 2021;47:369-421.

Nielsen N, Wetterslev J, Cronberg T, Erlinge D, Gasche Y, Hassager C et al. Targeted temperature management at 33°C versus 36°C after cardiac arrest. N Engl J Med. 2013;369:2197-206.

Lascarrou JB, Merdji H, Le Gouge A, Colin G, Grillet G, Girardie P et al. Targeted temperature management for cardiac arrest with nonshockable rhythm. N Engl J Med. 2019;381:2327-37.

Dankiewics J, Cronberg T, Lilja G, Jakobsen JC, Levin H, Ullén S et al. Hypothermia versus normothermia after out-of-hospital cardiac arrest. N Engl J Med. 2021;384:2283-94.

Fernando SM, Di Santo P, Sadeghirad B, Lascarrou JB, Rochwerg B, Mathew R et al. Targeted temperature management following out-of-hospital cardiac arrest: a systematic review and network meta-analysis of temperature targets. Intensive Care Med. 2021;47:1078-88.

Targeted temperature management in adult cardiac arrest: Systematic review and meta-analysis. Resuscitation 2021;167;160-72

Rittenberg JC, Popescu A, Brenner RP, Guyette FX, Callaway CW. Frequency and timing of nonconvulsive status epilepticus in comatose post-cardiac arrest subjects treated with hypothermia. Neurocritical Care. 2012;16:114-22.

Mulder M, Geocadin RG. Neurology of cardiopulmonary resuscitation. Handb Clin Neurol. 2017;141:593-617.

Ruijter BJ, Keijzer HM, Tjepkema-Cloostermans MC, Blans MJ, Beishuizen A, Tromp SC et al. Treating rhythmic and periodic EEG patterns in comatose survivors of cardiac arrest. N Eng J Med. 2022;386:724-34

Sondergaard KB, Riddersholm S, Wissenberg M, Hansen SM, Barcella CA, Karlsson L et al. Out-of-hospital cardiac arrest: 30-day survival and 1-year risk of anoxic brain damage or nursing home admission according to consciousness status at hospital arrival. Resuscitation 2020;148:251-8.

Sandroni C, DArrigo S, Callaway CW, Cariou A, Dragancea I, Taccone FS et al. The rate of brain death and organ donation in patients resuscitated from cardiac arrest: a systematic review and meta-analysis. Intensive Care Med. 2016;42:1661-71.

Carroll E, Lewis A. Neuroprognostication after cardiac arrest: Who recovers?, ¿Who progresses to brain death? Sem Neurol. 2021;41:606-18.

Rossetti AO, Rabinstein AA, Oddo M. Neurological prognostication of outcome in patients in coma after cardiac arrest. Lancet Neurol. 2016;15:597-609.

Sandroni C, DArrigo S, Cacciola S, Hoedemaekers CWE, Kamps MJA, Oddo M et al. Prediction of poor neurological outcome in comatose survivors of cardiac arrest: a systematic review. Intensive Care Med. 2020;46:1803-51.

Zakynthinos GE, Tsolaki V, Bardaka F, Makris D. Fixed dilated pupils in Covid-19 ARDS patients under rocuronium, reversed after discontinuation. J Crit Care. 2021;65:259-60.

Ruijter BJ, Tjepkema-Cloostermans MC, Tromp SC, van der Bergh WM, Foudraine MA, Kornips FHM et al. Early electro-encephalography for outcome prediction of postanoxic coma: A prospective cohort study. Ann Neurol. 2019;86:203-14.

Backman S, Westhall E, Dragancea I, Friberg H, Rundgren M, Ullén S et al. Electroencephalographic characteristics of status epilepticus after cardiac arrest. Clin Neurophysiol. 2017;128:681-8.

Hirsch LJ, Fong MWK, Leitinger M, LaRoche SM, Beniczky S, Abend NS et al. American Clinical Neurophysiology Society's standardized critical care EEG terminology 2021 version. J Clin Neurophysiol. 2021;38:1-29.

Freund B, Kaplan PW. Post-hypoxic myoclonus: Differentiating benign and malignant etiologies in diagnosis and prognosis. Clin Neurophysiol Pract. 2017;2:98-102.

Admiraal MM, Horn J, Hofmeijer J, Hoedemaekers CWE, van Kaam CR, Keijzer HM et al. EEG reactivity testing for prediction of good outcome in patients after cardiac arrest. Neurology. 2020;95:e653-e661.

Admiraal MM, van Rootselaar AF, Horn J. International consensus on EEG reactivity testing after cardiac: Towards standarization. Resuscitation. 2018;131:36-41.

Van Soest TM, van Rootselaar AF, Admiraal MM, Potter WV, Koelman JHMT, Horn J. SSEP amplitudes add information for prognostication in postanoxic coma. Resuscitation. 2021;163:172-5.

Wang GN, Chen XF, Lv JR, Sun NN, Xu XQ, Zhang JS. The prognostic value of gray white matter ratio on brain computed tomography in adult comatose cardiac arrest survivors. J Chin Med Assoc 2018;81:599-604.

Moseby-Knappe M, Cronberg T. Blood biomarkers of brain injury after cardiac arrest - A dynamic field. Resuscitation 2020;156:273-276.

Hoiland RL, Rikhraj KJ, Thiara S, Fordyce C, Kramer AH, Skrifvars MB et al. Neurologic prognostication after cardiac arrest using brain biomarkers: A systematic review and meta-analysis. JAMA Neurol. 2022;79(4):390-8

Madelaine T, Cour M, Roy P, Vivien B, Carpentier J, Dumas F et al. Prediction of brain death after out-of-hospital cardiac arrest: Development and validation of the brain death after cardiac arrest score. Chest. 2021;160(1):139-47.

Argaud L, Cour M, Dubien PY, Giraud F, Jossan C, Riche B et al. Effect of cyclosporine in nonshockable out-of-hospital cardiac arrest: The CYRUS randomized clinical trial. JAMA Cardiol. 2016;1(15):557-65.

Cariou A, Deye N, Vivian B, Richard O, Pichon N, Bourg A et al. Early high-dose erythropoietin therapy after out-of-hospital cardiac arrest: A multicenter, randomized controlled trial. J Am Coll Cardiol. 2016;68(1):40-9.

Lomero M, Gardiner D, Coll E, Haase-Kromwijk B, Procaccio F, Immer F et al. Donation after circulatory death today: an updated overview of the European landscape. Transpl Int. 2020;33:76-8.

Hornby L, Dhanani S, Shemie SD. Update of a systematic review of autoresuscitation after cardiac arrest. Crit Care Med. 2018;46(3):e268-e272.

Steinberg A, Abella BS, Gilmore EJ, Hwang DY, Kennedy N, Lau W, et al. Frequency of withdrawal of life-sustaining therapy for perceived poor neurologic prognosis. Crit Care Explor. 2021;3(7):e0487.

Stachulski F, Siegerink B, Bösel J. Dying in the neurointensive care unit after withdrawal of life-sustaining therapy: Associations of advance directives and health-care proxies with timing and treatment intensity. J Intensive Care Med. 2021;36(4):451-8.

Mark NM, Rayner SG, Lee NJ, Curtis JR. Global variability in withholding and withdrawal of life-sustaining treatment in the intensive care unit: a systematic review. Intensive Care Med. 2015;41(9):1572-85.

Muehlschlegel S, Perman SM, Elmer J, Haggins A, Teixeira Bailey ND, Huang J, et al. The experiences and needs of families of comatose patients after cardiac arrest and severe neurotrauma: The perspectives of national key stakeholders during a national institutes of health-funded workshop. Crit Care Explor . 2022;4(3):e0648.

Chessa F, Moreno F. Ethical and legal considerations in end-of-life care. Prim Care Clin Office Pract. 2019;46:387-98

Sulmasy DP, Hughes MT, Yenokyan G, Kub J, Terry PB, Astrow AB, et al. The Trial of Ascertaining Individual Preferences for Loved Ones' Role in End-of-Life Decisions (TAILORED) Study: A randomized controlled trial to improve surrogate decision making. J Pain Symptom Manage. 2017;54(4): 455-65.

Greer DM, Shemie SD, Lewis A, Torrance S, Varelas P, Goldenberg FD et al. Determination of brain death/death by neurologic criteria. The World Brain Death Project. JAMA. 2020;324(11):1078-97

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Descargas

Los datos de descargas todavía no están disponibles.