Fallo terapéutico en esclerosis múltiple remitente-recurrente: definición y algoritmo para su manejo, un consenso de expertos
PDF
XML

Palabras clave

esclerosis múltiple recurrente-remitente
cambio de tratamiento
consenso
Colombia
toma de decisiones
eficiencia

Resumen

Introducción: la esclerosis múltiple es una enfermedad crónica, neurodegenerativa y autoinmune del sistema nervioso central. En Colombia, se considera como la enfermedad huérfana-rara más común, con 3224 casos reportados entre los años 2016 y 2021. El tratamiento se basa en una variedad de terapias modificadoras de la enfermedad que busca reducir las recaídas, disminuir la actividad en imágenes y retrasar la progresión de la discapacidad; sin embargo, el manejo clínico presenta desafíos debido a la falta de definiciones claras sobre el fallo de las terapias modificadoras y la falta de guías claras para el cambio de tratamiento.

Objetivo: elaborar una definición de fallo terapéutico y diseñar un algoritmo para su manejo en pacientes con esclerosis múltiple recurrente en Colombia.

Materiales y métodos: se llevó a cabo un consenso de expertos mediante la metodología Delphi en dos rondas virtuales con diez expertos. Además, se hizo una revisión de la literatura para obtener información destinada al diseño de la definición y al algoritmo del fallo terapéutico.

Resultados: se elaboró una definición de fallo terapéutico compuesta por una introducción y la descripción de las variables clínicas que se utilizarán para determinar si un paciente presenta fallo terapéutico, y también se diseñó un algoritmo con una estrategia de optimización terapéutica, considerando las necesidades individuales de cada paciente según la definición diseñada previamente.

Conclusiones: se desarrolló una definición y un algoritmo de manejo específico para Colombia basados en evidencia, experiencia clínica y recomendaciones de expertos. Estas herramientas facilitarán la toma de decisiones, el seguimiento y la eficiencia de los tratamientos, y se actualizarán periódicamente para reflejar avances científicos y mejores prácticas.

https://doi.org/10.22379/anc.v41i1.1862

PDF
XML

Citas

Yamout BI, Alroughani R. Multiple Sclerosis. Semin Neurol. 2018;38(2):212-25. https://doi.org/10.1055/s-0038-1649502

Goodin DS. The epidemiology of multiple sclerosis: insights to disease pathogenesis. Handb Clin Neurol. 2014;122:231-66. https://doi.org/10.1016/B978-0-444-52001-2.00010-8

Vermersch P, De Sèze J, Clavelou P, Durand-Dubief F, Maillart E, Mekies C, et al. Expert opinion: criteria for second-line treatment failure in patients with multiple sclerosis. Mult Scler Relat Disord. 2019;36:101406. https://doi.org/10.1016/j.msard.2019.101406

Wiendl H, Gold R, Berger T, Derfuss T, Linker R, Mäurer M, et al. Multiple Sclerosis Therapy Consensus Group (MSTCG): position statement on disease-modifying therapies for multiple sclerosis (white paper). Ther Adv Neurol Disord. 2021;14:17562864211039648. https://doi.org/10.1177/17562864211039648

Walton C, King R, Rechtman L, Kaye W, Leray E, Marrie RA, et al. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition. Mult Scler. 2020;26(14):1816-21. https://doi.org/10.1177/1352458520970841

Leray E, Moreau T, Fromont A, Edan G. Epidemiology of multiple sclerosis. Rev Neurol. 2016;172(1):3-13. https://doi.org/10.1016/j.neurol.2015.10.006

Caparó-Zamalloa C, Velásquez-Rimachi V, Mori N, Dueñas-Pacheco WI, Huerta-Rosario A, Farroñay-García C, et al. Clinical pathway for the diagnosis and management of patients with relapsing-remitting multiple sclerosis: a first proposal for the Peruvian population. Front Neurol. 2021;12:667398. https://doi.org/10.3389/fneur.2021.667398

Instituto Nacional de Salud. Comportamiento de la notificación al Sivigila de las enfermedades huérfanas-raras, Colombia, 2021 hasta semana epidemiológica 20 [internet]. Boletín Epidemiológico Semanal. [citado 2022 oct. 4]. Disponible en: http://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2021_Boletin_epidemiologico_semana_24.pdf

Jiménez-Pérez CE, Zarco-Montero LA, Castañeda-Cardona C, Otálora Esteban M, Martínez A, Rosselli D. Estado actual de la esclerosis múltiple en Colombia. Acta Neurol Colomb. 2015;31(4):385-90. https://doi.org/10.22379/2422402256

Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sørensen PS, Thompson AJ, et al. Defining the clinical course of multiple sclerosis. Neurology. 2014;83(3):278-86. https://doi.org/10.1212/WNL.0000000000000560

Leray E, Yaouanq J, Le Page E, Coustans M, Laplaud D, Oger J, et al. Evidence for a two-stage disability progression in multiple sclerosis. Brain. 2010;133(pt. 7):1900-13. https://doi.org/10.1093/cerebro/awq076

Hosseiny M, Newsome SD, Yousem DM. Radiologically isolated syndrome: a review for neuroradiologists. AJNR Am J Neuroradiol. 2020;41(9):1542-9. https://doi.org/10.3174/ajnr.A6649

Menon S, Shirani A, Zhao Y, Oger J, Traboulsee A, Freedman MS, et al. Characterising aggressive multiple sclerosis. J Neurol Neurosurg Psychiatry. 2013;84(11):1192-8. https://doi.org/10.1136/jnnp-2013-304951

Klineova S, Lublin FD. Clinical course of multiple sclerosis. Cold Spring Harb Perspect Med. 2018;8(9):a028928. https://doi.org/10.1101/cshperspect.a028928

Lublin FD, Baier M, Cutter G. Effect of relapses on development of residual deficit in multiple sclerosis. Neurology. 2003;61(11):1528-32. https://doi.org/10.1212/01.wnl.0000096175.39831.21

Huang WJ, Chen WW, Zhang X. Multiple sclerosis: pathology, diagnosis and treatments. Exp Ther Med. 2017;13(6):3163-6. https://doi.org/10.3892/etm.2017.4410

Kamm CP, Uitdehaag BM, Polman CH. Multiple sclerosis: current knowledge and future outlook. Eur Neurol. 2014;72(3-4):132-41. https://doi.org/10.1159/000360528

Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17(2):162-73. https://doi.org/10.1016/S1474-4422(17)30470-2

Lizak N, Lugaresi A, Alroughani R, Lechner-Scott J, Slee M, Havrdova E, et al. Highly active immunomodulatory therapy ameliorates accumulation of disability in moderately advanced and advanced multiple sclerosis. J Neurol Neurosurg Psychiatry. 2017;88(3):196-203. https://doi.org/10.1136/jnnp-2016-313976

Brieva L, Casanova Estruch B, García Merino JA, Meca-Lallana V, Río J, Rodríguez-Antigüedad A, et al. Disease modifying therapy switching in relapsing multiple sclerosis: A Delphi consensus of the demyelinating expert group of the Spanish society of neurology. Mult Scler Relat Disord. 2022;63:103805. https://doi.org/10.1016/j.msard.2022.103805

Piena MA, Schoeman O, Palace J, Duddy M, Harty GT, Wong SL. Modified Delphi study of decision-making around treatment sequencing in relapsing-remitting multiple sclerosis. Eur J Neurol. 2020;27(8):1530-6. https://doi.org/10.1111/ene.14267

de Borda PM. Memoire sur les elections au scrutin [internet]. Histoire de l'Académie Royale des Sciences. [citado 2023 febr. 27]. Disponible en: http://asklepios.chez.com/XIX/borda.htm

Bartosik-Psujek H, Kaczy?ski ?, Górecka M, Rolka M, Wójcik R, Zi?ba P, et al. Cladribine tablets versus other disease-modifying oral drugs in achieving no evidence of disease activity (NEDA) in multiple sclerosis-A systematic review and network meta-analysis. Mult Scler Relat Disord. 2021;49:102769. https://doi.org/10.1016/j.msard.2021.102769

Bose D, Ravi R, Maurya M, Pushparajan L, Konwar M. Impact of disease-modifying therapies on MRI outcomes in patients with relapsing -remitting multiple sclerosis: a systematic review and network meta-analysis. Mult Scler Relat Disord. 2022;61:103760. https://doi.org/10.1016/j.msard.2022.103760

Huisman E, Papadimitropoulou K, Jarrett J, Bending M, Firth Z, Allen F, et al. Systematic literature review and network meta-analysis in highly active relapsing-remitting multiple sclerosis and rapidly evolving severe multiple sclerosis. BMJ Open. 2017;7(3):e013430. https://doi.org/10.1136/bmjopen-2016-013430

Li H, Hu F, Zhang Y, Li K. Comparative efficacy and acceptability of disease-modifying therapies in patients with relapsing-remitting multiple sclerosis: a systematic review and network meta-analysis. J Neurol. 2020;267(12):3489-98. https://doi.org/10.1007/s00415-019-09395-w

Liu Z, Liao Q, Wen H, Zhang Y. Disease modifying therapies in relapsing-remitting multiple sclerosis: a systematic review and network meta-analysis. Autoimmun Rev. 2021;20(6):102826. https://doi.org/10.1016/j.autrev.2021.102826

McCool R, Wilson K, Arber M, Fleetwood K, Toupin S, Thom H, et al. Systematic review and network meta-analysis comparing ocrelizumab with other treatments for relapsing multiple sclerosis. Mult Scler Relat Disord. 2019;29:55-61. https://doi.org/10.1016/j.msard.2018.12.040

Asha MZI, Al-Asaad Y, Khalil SFH. The comparative efficacy and safety of anti-CD20 monoclonal antibodies for relapsing-remitting multiple sclerosis: a network meta-analysis. IBRO Neurosci Rep. 2021;11:103-11. https://doi.org/10.1016/j.ibneur.2021.08.003

Lucchetta RC, Tonin FS, Borba HHL, Leonart LP, Ferreira VL, Bonetti AF, et al. Disease-modifying therapies for relapsing-remitting multiple sclerosis: a network meta-analysis. CNS Drugs. 2018;32(9):813-26. https://doi.org/10.1007/s40263-018-0541-5

Samjoo IA, Worthington E, Drudge C, Zhao M, Cameron C, Häring DA, et al. Comparison of ofatumumab and other disease-modifying therapies for relapsing multiple sclerosis: a network meta-analysis. J Comp Eff Res. 2020;9(18):1255-74. https://doi.org/10.2217/cer-2020-0122

Siddiqui MK, Khurana IS, Budhia S, Hettle R, Harty G, Wong SL. Systematic literature review and network meta-analysis of cladribine tablets versus alternative disease-modifying treatments for relapsing-remitting multiple sclerosis. Curr Med Res Opin. 2018;34(8):1361-71. https://doi.org/10.1080/03007995.2017.1407303

Tjelle TE, Rose C, Ohm I, Pike E, Haheim L, Bidonde J, et al. [Disease modifying treatments for relapsing remitting multiple sclerosis, including rituximab. A health technology assessment]. Norwegian Institute of Public Health; 2019. https://www.fhi.no/globalassets/dokumenterfiler/rapporter/2019/disease-modifying-treatments-for-relapsing-remitting-multiple-sclerosis-including-rituximab-hta-rapport-2019.pdf

Xu X, Chi S, Wang Q, Li C, Xu B, Zhang J, et al. Efficacy and safety of monoclonal antibody therapies for relapsing remitting multiple sclerosis: a network meta-analysis. Mult Scler Relat Disord. 2018;25:322-8. https://doi.org/10.1016/j.msard.2018.08.026

Zhang J, Shi S, Zhang Y, Luo J, Xiao Y, Meng L, et al. Alemtuzumab versus interferon beta 1a for relapsing?remitting multiple sclerosis. Cochrane Database Syst Rev. 2017;11(11):CD010968. https://doi.org/10.1002/14651858.CD010968.pub2

Hauser SL, Bar-Or A, Comi G, Giovannoni G, Hartung HP, Hemmer B, et al. Ocrelizumab versus Interferon Beta-1a in Relapsing Multiple Sclerosis. N Engl J Med. 2017;376(3):221-34. https://doi.org/10.1056/NEJMoa1601277

Cree BAC, Pradhan A, Pei J, Williams MJ, OPERA I and OPERA II clinical investigators. Efficacy and safety of ocrelizumab vs interferon beta-1a in participants of African descent with relapsing multiple sclerosis in the Phase III OPERA I and OPERA II studies. Mult Scler Relat Disord. 2021;52:103010. https://doi.org/10.1016/j.msard.2021.103010

Ziemssen T, Medin J, Couto CAM, Mitchell CR. Multiple sclerosis in the real world: a systematic review of fingolimod as a case study. Autoimmun Rev. 2017;16(4):355-76. https://doi.org/10.1016/j.autrev.2017.02.007

Gärtner J, Chitnis T, Ghezzi A, Pohl D, Brück W, Häring DA, et al. Relapse rate and MRI activity in young adult patients with multiple sclerosis: a post hoc analysis of phase 3 fingolimod trials. Mult Scler J Exp Transl Clin. 2018;4(2):2055217318778610. https://doi.org/10.1177/2055217318778610

Hauser SL, Kappos L, Arnold DL, Bar-Or A, Brochet B, Naismith RT, et al. Five years of ocrelizumab in relapsing multiple sclerosis: OPERA studies open-label extension. Neurology. 2020;95(13):e1854-67. https://doi.org/10.1212/WNL.0000000000010376

Prosperini L, Lucchini M, Haggiag S, Bellantonio P, Bianco A, Buscarinu MC, et al. Fingolimod vs dimethyl fumarate in multiple sclerosis: a real-world propensity score-matched study. Neurology. 2018;91(2):e153-61. https://doi.org/10.1212/WNL.0000000000005772

Skromme-Eisenberg E, Treviño-Frenk I, Llamosa García Velázquez GL, Quiñones-Aguilar S, Rivas-Alonso V, de la Maza-Flores M, et al. Clinical practice patterns in multiple sclerosis management: Mexican consensus recommendations. Mult Scler Relat Disord. 2021;53:103053. https://doi.org/10.1016/j.msard.2021.103053

Alroughani R, Inshasi J, Al-Asmi A, Alqallaf A, Al Salti A, Shatila A, et al. Expert consensus from the Arabian Gulf on selecting disease-modifying treatment for people with multiple sclerosis according to disease activity. Postgrad Med. 2020;132(4):368-76. https://doi.org/10.1080/00325481.2020.1734394

Alroughani R, Ashkanani A, Al-Hashel J, Khan R, Thussu A, Alexander KJ, et al. Consensus recommendations for the diagnosis and treatment of multiple sclerosis in Kuwait. Clin Neurol Neurosurg. 2016;143:51-64. https://doi.org/10.1016/j.clineuro.2016.02.001

Karussis D, Biermann LD, Bohlega S, Boiko A, Chofflon M, Fazekas F, et al. A recommended treatment algorithm in relapsing multiple sclerosis: report of an international consensus meeting. Eur J Neurol. 2006;13(1):61-71. https://doi.org/10.1111/j.1468-1331.2006.01147.x

Bigaut K, Cohen M, Durand-Dubief F, Maillart E, Planque E, Zephir H, et al. How to switch disease-modifying treatments in multiple sclerosis: Guidelines from the French Multiple Sclerosis Society (SFSEP). Mult Scler Relat Disord. 2021;53:103076. https://doi.org/10.1016/j.msard.2021.103076

Finkelsztejn A, Gabbai AA, Fragoso YD, Carrá A, Macías-Islas MA, Arcega-Revilla R, et al. Latin American algorithm for treatment of relapsing-remitting multiple sclerosis using disease-modifying agents. Arq Neuropsiquiatr. 2012;70(10):799-806. https://doi.org/10.1590/s0004-282x2012001000009

Cuevas C, Velázquez Quintana M, Núñez L, Skromme E, Árcega R, Barroso N, et al. Consenso Mexicano para la Esclerosis Múltiple. Guía diagnóstica y terapéutica. Rev Mex Neurosci. 2007;8(2):155-162. https://previous.revmexneurociencia.com/wp-content/uploads/2014/06/Nm072-09.pdf

Centro Nacional de Excelencia Tecnológica en Salud. Tratamiento modificador de enfermedad en pacientes con diagnóstico de esclerosis múltiple [internet]. Consejo de Salubridad General. [citado 2022 nov. 22]. Disponible en: http://www.facmed.unam.mx/sg/css/GPC/SIDSS-GPC/gpc/docs/SSA-417-10-ER.pdf

Fazekas F, Bajenaru O, Berger T, Fabjan TH, Ledinek AH, Jakab G, et al. How does fingolimod (Gilenya®) fit in the treatment algorithm for highly active relapsing-remitting multiple sclerosis? Front Neurol. 2013;4:10. https://doi.org/10.3389/fneur.2013.00010

Yamout B, Sahraian M, Bohlega S, Al-Jumah M, Goueider R, Dahdaleh M, et al. Consensus recommendations for the diagnosis and treatment of multiple sclerosis: 2019 revisions to the MENACTRIMS guidelines. Mult Scler Relat Disord. 2020;37:101459. https://doi.org/10.1016/j.msard.2019.101459

Yamout B, Alroughani R, Al-Jumah M, Goueider R, Dahdaleh M, Inshasi J, et al. Consensus recommendations for the diagnosis and treatment of multiple sclerosis: the Middle East North Africa Committee for Treatment and Research In Multiple Sclerosis (MENACTRIMS). Curr Med Res Opin. 2015;31(7):1349-61. https://doi.org/10.1185/03007995.2015.1047750

NHS England. Treatment algorithm for multiple sclerosis disease-modifying therapies [internet]. NHS England [citado 2022 nov. 23]. Disponible en: https://www.england.nhs.uk/wp-content/uploads/2024/03/treatment-algorithm-for-multiple-sclerosis-disease-modifying-therapies-july-23.pdf

Montalban X, Gold R, Thompson AJ, Otero-Romero S, Amato MP, Chandraratna D, et al. ECTRIMS/EAN Guideline on the pharmacological treatment of people with multiple sclerosis. Mult Scler. 2018;24(2):96-120. https://doi.org/10.1177/1352458517751049

Cristiano E, Alonso R, Alvez Pinheiro A, Bacile EA, Balbuena ME, Ballario C, et al. Argentinean recommendations on the identification of treatment failure in relapsing remitting multiple sclerosis patients. J Neurol Sci. 2018;385:217-24. https://doi.org/10.1016/j.jns.2018.01.004

Vizcarra DR, Cruz AG, Rojas E, Mori N, Caparó C, Castañeda CC, et al. Guía de práctica clínica para el diagnóstico y tratamiento de esclerosis múltiple en adultos. Rev Neuropsiquiatr. 2019;82(4):242-57. https://doi.org/10.20453/rnp.v82i4.3646

Correale J, Abad P, Alvarenga R, Alves-Leon S, Armas E, Barahona J, et al. Management of relapsing-remitting multiple sclerosis in Latin America: practical recommendations for treatment optimization. J Neurol Sci. 2014;339(1-2):196-206. https://doi.org/10.1016/j.jns.2014.02.017

Freedman MS, Devonshire V, Duquette P, Giacomini PS, Giuliani F, Levin MC, et al. Treatment optimization in multiple sclerosis: Canadian MS Working Group Recommendations. Can J Neurol Sci. 2020;47(4):437-55. https://doi.org/10.1017/cjn.2020.66

Ontaneda D, Tallantyre EC, Raza PC, Planchon SM, Nakamura K, Miller D, et al. Determining the effectiveness of early intensive versus escalation approaches for the treatment of relapsing-remitting multiple sclerosis: The DELIVER-MS study protocol. Contemp Clin Trials. 2020;95:106009. https://doi.org/10.1016/j.cct.2020.106009

Yamout B, Al-Jumah M, Sahraian MA, Almalik Y, Khaburi JA, Shalaby N, et al. Consensus recommendations for diagnosis and treatment of Multiple Sclerosis: 2023 revision of the MENACTRIMS guidelines. Mult Scler Relat Disord. 2024;83:105435. https://doi.org/10.1016/j.msard.2024.105435

Guo J, Wu J, Wang L, Liu H, Wu X, Yang H, et al. Treatment algorithms of relapsing multiple sclerosis: an exploration based on the available disease-modifying therapies in China. Ther Adv Neurol Disord. 2024;17:17562864241239117. https://doi.org/10.1177/17562864241239117

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Descargas

Los datos de descargas todavía no están disponibles.