The Sonic Hedgehog pathway in the nervous system: From embryo to tumor
PDF (Español)

Keywords

Sonic Hedgehog
Nervous system
Embryogenesis
Neurodevelopment
Tumorigenesis
Medulloblastoma
Molecular mechanisms

Abstract

Introduction: The Sonic Hedgehog pathway regulates key processes in central nervous system development, including neuronal specification, cell migration, and precursor cell proliferation in the cerebellum. Its dysfunction is associated with various brain pathologies, including tumors such as medulloblastoma.

Materials and Methods: This article reviews the role of the Sonic Hedgehog pathway in central nervous system development and its implications in brain tumorigenesis, highlighting the molecular parallels between both processes. The review includes studies analyzing its functions in cell communication, its impact on neurodevelopment, and its specific relationship with medulloblastoma.

Results: The Sonic Hedgehog pathway facilitates cell differentiation and migration during normal development through both canonical and non-canonical signaling. In tumors such as medulloblastoma, its uncontrolled activation promotes proliferation, invasiveness, and therapy resistance, negatively affecting patient prognosis.

Discussion: The similarity in signaling mechanisms between normal development and tumorigenesis suggests that alterations in the Sonic Hedgehog pathway may reactivate embryonic developmental programs in tumor cells. Identifying modulatory factors of this pathway is crucial for developing more effective therapeutic strategies.

Conclusion: Despite differences in its regulation, the molecular parallels between embryonic development and tumorigenesis highlight the importance of studying the Sonic Hedgehog pathway. Understanding its role in both contexts opens new therapeutic perspectives for overcoming resistance in brain tumors.

https://doi.org/10.22379/anc.v41i3.1940
PDF (Español)

References

Xu J, Iyyanar PPR, Lan Y, Jiang R. Sonic hedgehog signaling in craniofacial development. Differentiation. 2023;133:60-76. https://doi.org/10.1016/j.diff.2023.07.002

Placzek M, Briscoe J. Sonic hedgehog in vertebrate neural tube development. Int J Dev Biol. 2018;62:225-34. https://doi.org/10.1387/ijdb.170293jb

Tamayo-Orrego L, Charron F. Recent advances in SHH medulloblastoma progression: tumor suppressor mechanisms and the tumor microenvironment. F1000Res. 2019;8(F1000 Faculty Rev):1823. https://doi.org/10.12688/f1000research.20013.1

Azevedo FAC, Carvalho LRB, Grinberg LT, Farfel JM, Ferretti REL, Leite REP, et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol. 2009;513(5):532-41. https://doi.org/10.1002/cne.21974

Xavier GM, Seppala M, Barrell W, Birjandi AA, Geoghegan F, Cobourne MT. Hedgehog receptor function during craniofacial development. Dev Biol. 2016;415(2):198-215. https://doi.org/10.1016/j.ydbio.2016.02.009

Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021;23(8):1231-51. https://doi.org/10.1093/neuonc/noab106

Northcott PA, Robinson GW, Kratz CP, Mabbott DJ, Pomeroy SL, Clifford SC, et al. Medulloblastoma. Nat Rev Dis Primers. 2019;5(1):11. https://doi.org/10.1038/s41572-019-0063-6

Pachajoa H, Moreno F. Células de la cresta neural: Evolución, bases embrionarias y desarrollo cráneo-facial. Revisión sistemática de la literatura. Rev estomatol. 2015;23(2):45-56.

De Luca A, Cerrato V, Fucà E, Parmigiani E, Buffo A, Leto K. Sonic hedgehog patterning during cerebellar development. Cell Mol Life Sci. 2016;73(2):291-303. https://doi.org/10.1007/s00018-015-2065-1

Nie X, Luukko K, Kettunen P. BMP signalling in craniofacial development. Int J Dev Biol. 2006;50(6):511-21. https://doi.org/10.1387/ijdb.052101xn

Lee HO, Norden C. Mechanisms controlling arrangements and movements of nuclei in pseudostratified epithelia. Trends Cell Biol. 2012;23(3):141-50. https://doi.org/10.1016/j.tcb.2012.11.001

Kicheva A, Bollenbach T, Ribeiro A, Valle HP, Lovell-Badge R, Episkopou V, et al. Coordination of progenitor specification and growth in mouse and chick spinal cord. Science. 2014;345(6204):1254927. https://doi.org/10.1126/science.1254927

Spear PC, Erickson CA. Interkinetic nuclear migration: a mysterious process in search of a function. Dev Growth Differ. 2012;54(3):306-16. https://doi.org/10.1111/j.1440-169x.2012.01342.x

Tsai JW, Chen Y, Kriegstein AR, Vallee RB. LIS1 RNA interference blocks neural stem cell division, morphogenesis, and motility at multiple stages. J Cell Biol. 2005;170(6):935-45. https://doi.org/10.1083/jcb.200505166

Das RM, Storey KG. Apical abscission alters cell polarity and dismantles the primary cilium during neurogenesis. Science. 2014;343(6167):200-4. https://doi.org/10.1126/science.1247521

Del Bene F, Wehman AM, Link BA, Baier H. Regulation of neurogenesis by interkinetic nuclear migration through an apical-basal notch gradient. Cell. 2008;134(6):1055-65. https://doi.org/10.1016/j.cell.2008.07.017

Martí E, Takada R, Bumcrot DA, Sasaki H, McMahon AP. Distribution of Sonic hedgehog peptides in the developing chick and mouse embryo. Development. 1995;121(8):2537-47. https://doi.org/10.1242/dev.121.8.2537

Roelink H, Porter JA, Chiang C, Tanabe Y, Chang DT, Beachy PA, et al. Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of sonic hedgehog autoproteolysis. Cell. 1995;81(3):445-55. https://doi.org/10.1016/0092-8674(95)90397-6

Chizhikov VV, Millen KJ. Roof plate-dependent patterning of the vertebrate dorsal central nervous system. Dev Biol. 2005;277(2):287-95. https://doi.org/10.1016/j.ydbio.2004.10.011

Ericson J, Rashbass P, Schedl A, Brenner-Morton S, Kawakami A, van Heyningen V, et al. Pax6 controls progenitor cell identity and neuronal fate in response to graded Shh signaling. Cell. 1997;90(1):169-80. https://doi.org/10.1016/s0092-8674(00)80323-2

Corallo D, Trapani V, Bonaldo P. The notochord: structure and functions. Cell Mol Life Sci. 2015;72(16):2989-3008. https://doi.org/10.1007/s00018-015-1897-z

Christ B, Ordahl CP. Early stages of chick somite development. Anat Embryol. 1995;191(5):381-96. https://doi.org/10.1007/bf00304424

D'Amore PA, Ng YS. Won't you be my neighbor? Local induction of arteriogenesis. Cell. 2002;110(3):289-92. https://doi.org/10.1016/s0092-8674(02)00869-3

Yamada T, Placzek M, Tanaka H, Dodd J, Jessell TM. Control of cell pattern in the developing nervous system: polarizing activity of the floor plate and notochord. Cell. 1991;64(3):635-47. https://doi.org/10.1016/0092-8674(91)90247-v

Briscoe J, Chen Y, Jessell TM, Struhl G. A hedgehog-insensitive form of patched provides evidence for direct long-range morphogen activity of sonic hedgehog in the neural tube. Mol Cell. 2001;7(6):1279-91. https://doi.org/10.1016/s1097-2765(01)00271-4

Allen BL, Song JY, Izzi L, Althaus IW, Kang JS, Charron F, et al. Overlapping roles and collective requirement for the coreceptors GAS1, CDO, and BOC in SHH pathway function. Dev Cell. 2011;20(6):775-87. https://doi.org/10.1016/j.devcel.2011.04.018

Carballo GB, Ribeiro Honorato J, Farias de Lopes GP, Leite de Sampaio E Spohr TC. A highlight on Sonic hedgehog pathway. Cell Commun Signal. 2018;16(1):11. https://doi.org/10.1186/s12964-018-0220-7

Goetz SC, Anderson KV. The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet. 2010;11(5):331-44. https://doi.org/10.1038/nrg2774

Jeng KS, Chang CF, Lin SS. Sonic Hedgehog signaling in organogenesis, tumors, and tumor microenvironments. Int J Mol Sci. 2020;21(3):758. https://doi.org/10.3390/ijms21030758

Kim J, Kato M, Beachy PA. Gli2 trafficking links Hedgehog-dependent activation of Smoothened in the primary cilium to transcriptional activation in the nucleus. Proc Natl Acad Sci U S A. 2009;106(51):21666-71. https://doi.org/10.1073/pnas.0912180106

Choudhry Z, Rikani AA, Choudhry AM, Tariq S, Zakaria F, Asghar MW, et al. Sonic hedgehog signalling pathway: a complex network. Ann Neurosci. 2014;21(1):28-31. https://doi.org/10.5214/ans.0972.7531.210109

Hui CC, Angers S. Gli proteins in development and disease. Annu Rev Cell Dev Biol. 2011;27:513-37. https://doi.org/10.1146/annurev-cellbio-092910-154048

Kogerman P, Grimm T, Kogerman L, Krause D, Undén AB, Sandstedt B, et al. Mammalian suppressor-of-fused modulates nuclear-cytoplasmic shuttling of Gli-1. Nat Cell Biol. 1999;1(5):312-9. https://doi.org/10.1038/13031

Riobó NA, Lu K, Ai X, Haines GM, Emerson CP Jr. Phosphoinositide 3-kinase and Akt are essential for Sonic Hedgehog signaling. Proc Natl Acad Sci U S A. 2006;103(12):4505-10. https://doi.org/10.1073/pnas.0504337103

Yi J, Wu J. Epigenetic regulation in medulloblastoma. Mol Cell Neurosci. 2018;87:65-76. https://doi.org/10.1016/j.mcn.2017.09.003

Jenkins D. Hedgehog signalling: emerging evidence for non-canonical pathways. Cell Signal. 2009;21(7):1023-34. https://doi.org/10.1016/j.cellsig.2009.01.033

Ho Wei L, Arastoo M, Georgiou I, Manning DR, Riobo-Del Galdo NA. Activation of the Gi protein-RHOA axis by non-canonical Hedgehog signaling is independent of primary cilia. PLoS One. 2018;13(8):e0203170. https://doi.org/10.1371/journal.pone.0203170

Polizio AH, Chinchilla P, Chen X, Manning DR, Riobo NA. Sonic Hedgehog activates the GTPases Rac1 and RhoA in a Gli-independent manner through coupling of smoothened to Gi proteins. Sci Signal. 2011;4(200):pt7. https://doi.org/10.1126/scisignal.2002396

Chinchilla P, Xiao L, Kazanietz MG, Riobo NA. Hedgehog proteins activate pro-angiogenic responses in endothelial cells through non-canonical signaling pathways. Cell Cycle. 2010;9(3):570-79. https://doi.org/10.4161/cc.9.3.10591

Akhshi T, Shannon R, Trimble WS. The complex web of canonical and non-canonical Hedgehog signaling. Bioessays. 2022;44(3):e2100183. https://doi.org/10.1002/bies.202100183

Ingram WJ, McCue KI, Tran TH, Hallahan AR, Wainwright BJ. Sonic Hedgehog regulates Hes1 through a novel mechanism that is independent of canonical Notch pathway signalling. Oncogene. 2008;27(10):1489-500. https://doi.org/10.1038/sj.onc.1210767

Klein SD, Nguyen DC, Bhakta V, Wong D, Chang VY, Davidson TB, et al. Mutations in the sonic hedgehog pathway cause macrocephaly-associated conditions due to crosstalk to the PI3K/AKT/mTOR pathway. Am J Med Genet A. 2019;179(12):2517-31. https://doi.org/10.1002/ajmg.a.61368

Larsen LJ, Møller LB. Crosstalk of Hedgehog and mTORC1 Pathways. Cells. 2020;9(10):2316. https://doi.org/10.3390/cells9102316

Chuang PT, McMahon AP. Vertebrate Hedgehog signalling modulated by induction of a Hedgehog-binding protein. Nature. 1999;397(6720):617-21. https://doi.org/10.1038/17611

Allen BL, Tenzen T, McMahon AP. The Hedgehog-binding proteins Gas1 and Cdo cooperate to positively regulate Shh signaling during mouse development. Genes Dev. 2007;21(10):1244-57. https://doi.org/10.1101/gad.1543607

Sasai N, Toriyama M, Kondo T. Hedgehog signal and genetic disorders. Front Genet. 2019;10:1103. https://doi.org/10.3389/fgene.2019.01103

Barakat MT, Humke EW, Scott MP. Learning from Jekyll to control Hyde: Hedgehog signaling in development and cancer. Trends Mol Med. 2010;16(8):337-48. https://doi.org/10.1016/j.molmed.2010.05.003

Amakye D, Jagani Z, Dorsch M. Unraveling the therapeutic potential of the Hedgehog pathway in cancer. Nat Med. 2013;19(11):1410-22. https://doi.org/10.1038/nm.3389

Pietrobono S, Gagliardi S, Stecca B. Non-canonical Hedgehog signaling pathway in cancer: activation of GLI transcription factors beyond smoothened. Front Genet. 2019;10:556. https://doi.org/10.3389/fgene.2019.00556

Rahnama F, Toftgård R, Zaphiropoulos PG. Distinct roles of PTCH2 splice variants in Hedgehog signalling. Biochem J. 2004;378(Pt 2):325-34. https://doi.org/10.1042/bj20031200

Teglund S, Toftgård R. Hedgehog beyond medulloblastoma and basal cell carcinoma. Biochim Biophys Acta. 2010;1805(2):181-208. https://doi.org/10.1016/j.bbcan.2010.01.003

Cambruzzi E. Medulloblastoma, WNT-activated/SHH-activated: clinical impact of molecular analysis and histogenetic evaluation. Childs Nerv Syst. 2018;34(5):809-15. https://doi.org/10.1007/s00381-018-3765-2

Tchelebi L, Ashamalla H, Graves PR. Mutant p53 and the response to chemotherapy and radiation. Subcell Biochem. 2014;85:133-59. https://doi.org/10.1007/978-94-017-9211-0_8

Menyhárt O, Gy?rffy B. Principles of tumorigenesis and emerging molecular drivers of SHH-activated medulloblastomas. Ann Clin Transl Neurol. 2019;6(5):990-1005. https://doi.org/10.1002/acn3.762

Niesen J, Ohli J, Sedlacik J, Dührsen L, Hellwig M, Spohn M, et al. Pik3ca mutations significantly enhance the growth of SHH medulloblastoma and lead to metastatic tumour growth in a novel mouse model. Cancer Lett. 2020;477:10-18. https://doi.org/10.1016/j.canlet.2020.02.028

Samkari A, White J, Packer R. SHH inhibitors for the treatment of medulloblastoma. Expert Rev Neurother. 2015;15(7):763-70. https://doi.org/10.1586/14737175.2015.1052796

Infante P, Conenna M, Adabbo G, Bufalieri F, Bottero M, Lospinoso Severini L, et al. MDB-28. The cytoskeleton regulators formins control the shh pathway and are involved in medulloblastoma tumorigenesis. Neuro Oncol. 2024;26(supl. 4):0. https://doi.org/10.1093/neuonc/noae064.477

Fernandez A, Northcott PA, Dalton J, Fraga C, Ellison D, Angers S, et al. YAP1 is amplified and up-regulated in hedgehog-associated medulloblastomas and mediates Sonic hedgehog-driven neural precursor proliferation. Genes Dev. 2009;23(23):2729-41. https://doi.org/10.1101/gad.1824509

Radhakrishnan A, Rohatgi R, Siebold C. Cholesterol access in cellular membranes controls Hedgehog signaling. Nat Chem Biol. 2020;16(12):1303-13. https://doi.org/10.1038/s41589-020-00678-2

Fan Q, Gong T, Zheng C, Ng JMY, Chen J, Myers C, et al. Statins repress hedgehog signaling in medulloblastoma with no bone toxicities. Oncogene. 2021;40(12):2258-72. https://doi.org/10.1038/s41388-021-01701-z

Gordon RE, Zhang L, Peri S, Kuo YM, Du F, Egleston BL, et al. Statins synergize with Hedgehog pathway inhibitors for treatment of medulloblastoma. Clin Cancer Res. 2018;24(6):1375-88. https://doi.org/10.1158/1078-0432.ccr-17-2923

Rimkus TK, Carpenter RL, Qasem S, Chan M, Lo HW. Targeting the Sonic Hedgehog signaling pathway: review of smoothened and GLI inhibitors. Cancers. 2016;8(2):22. https://doi.org/10.3390/cancers8020022

Franceschi E, Giannini C, Furtner J, Pajtler KW, Asioli S, Guzman R, et al. Adult medulloblastoma: updates on current management and future perspectives. Cancers. 2022;14(15):3708. https://doi.org/10.3390/cancers14153708

Tsiami F, Piccioni F, Root D, Bandopadhayhay P, Segal R, Tabatabai G, et al. P04.04.A genome-wide CRISPR/CAS9 knockout screens reveal epigenetic regulators as druggable targets for sonic hedgehog medulloblastoma. Neuro Oncol. 2023;25(supl. 2):ii41. https://doi.org/10.1093/neuonc/noad137.131

Tsiami F, Piccioni F, Root D, Bandopadhayay P, Segal R, Tabatabai G, et al. MEDB-45. Functional genomics identifies epigenetic regulators as novel therapeutic targets for sonic hedgehog medulloblastoma. Neuro Oncol. 2022;24(supl. 1):i116. https://doi.org/10.1093/neuonc/noac079.419

Valinciute G, Roussel MF. Targeting protein folding in N-Myc-driven medulloblastoma. Mol Oncol. 2023;17(3):387-9. https://doi.org/10.1002/1878-0261.13395

Conti V, Cominelli M, Pieri V, Gallotti AL, Pagano I, Zanella M, et al. mTORC1 promotes malignant large cell/anaplastic histology and is a targetable vulnerability in SHH-TP53 mutant medulloblastoma. JCI Insight. 2021;6(23):e153462. http://doi.org/10.1172/jci.insight.153462

Hwang GH, Scott DA, Segal RA. EPCT-17. Developing EYA phosphatase inhibitors with on-target effects in shh-medulloblastoma. Neuro Oncol. 2021;23(supl. 1):i50. https://doi.org/10.1093/neuonc/noab090.203

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Downloads

Download data is not yet available.