Manifestaciones neurológicas del envenenamiento causado por animales
PDF
XML

Palabras clave

mordeduras
picaduras
venenos
envenenamiento
neurotoxina
neurotoxicidad
neurotransmisor
antiveneno

Resumen

Introducción: la exposición al veneno de animales produce efectos clínicos, cuyas características y gravedad variarán según el animal, la cantidad de veneno inoculado y los factores del paciente. Algunas toxinas tienen la capacidad de afectar de manera directa (o a través de mecanismos indirectos) el funcionamiento del sistema nervioso central, periférico o autónomo.

Materiales y métodos: se realizó una búsqueda no sistemática en bases de datos referenciales, de literatura médica y científica disponible sobre el envenenamiento por animales y sus manifestaciones neurológicas. Se recopilaron datos de casos clínicos, estudios de laboratorio, revisiones sistemáticas y revisiones de tema sobre la fisiopatología, diagnóstico y tratamiento de estos envenenamientos.

Resultados: las neurotoxinas presentes en el veneno de serpientes, escorpiones, arañas y animales marinos puede causar una variada gama de síntomas neurológicos, desde dolor localizado hasta disfunción autonómica, convulsiones, parálisis e insuficiencia respiratoria. Además, prácticamente no existen datos del comportamiento de este tipo de envenenamientos en Colombia.

Discusión: la identificación temprana, el conocimiento de los mecanismos fisiopatológicos subyacentes y el manejo adecuado del envenenamiento por animales son fundamentales para mejorar el pronóstico y la recuperación de los pacientes afectados. El tratamiento incluye el uso de antivenenos específicos, medidas de soporte según la naturaleza y la gravedad del envenenamiento.

Conclusiones: se deben implementar líneas de investigación, entrenamiento y recursos para mejorar la capacidad de los profesionales de la salud en el abordaje integral del envenenamiento por animales, así como conocer las especies que habitan el territorio colombiano, sus toxinas y las características clínicas de su envenenamiento, con miras a mejorar el pronóstico y la recuperación de estos pacientes.

https://doi.org/10.22379/anc.v41i2.1882

PDF
XML

Citas

Gómez JP. Accidente por animales ponzoñosos y venenosos: su impacto en la salud ocupacional en Colombia. Rev Fac Nac Salud Pública. 2012;29(4):419-31. https://doi.org/10.17533/udea.rfnsp.9942

Herzig V. Animal venoms - curse or cure? Biomedicines. 2021;9(4):413. https://doi.org/10.3390/biomedicines9040413

World Health Organization. Snakebite envenoming [internet]. WHO; 2023 [citado 2024 mzo. 12]. https://www.who.int/news-room/fact-sheets/detail/snakebite-envenoming#:~:text=Key%20facts,are%20caused%20by%20snakebites%20annually

Bolívar-Barbosa J, Rodríguez-Vargas A. Actividad neurotóxica del veneno de serpientes del género Micrurus y métodos para su análisis. Revisión de la literatura. Rev Fac Med. 2020;68(3):453-62. https://doi.org/10.15446/revfacmed.v68n3.75992

Pandit K, Rawal A, Singh Maskey HM, Nepal G. Neurological and neuro-ophthalmological manifestations of snake bite: a systematic review. Ann Med Surg. 2023;86(1):392-400. https://doi.org/10.1097/ms9.0000000000001523

Bickler PE, Abouyannis M, Bhalla A, Lewin MR. Neuromuscular weakness and paralysis produced by snakebite envenoming: mechanisms and proposed standards for clinical assessment. Toxins. 2023;15(1):49. https://doi.org/10.3390/toxins15010049

Baudou FG, Rodriguez JP, Fusco L, de Roodt AR, De Marzi MC, Leiva L. South American snake venoms with abundant neurotoxic components. Composition and toxicological properties. A literature review. Acta Trop. 2021;224:106119. https://doi.org/10.1016/j.actatropica.2021.106119

Sevilla-Sánchez MJ, Ayerbe-González S, Bolaños-Bolaños E. Aspectos biomédicos y epidemiológicos del accidente ofídico en el departamento del Cauca, Colombia, 2009-2018. Bioméd. 2021;41(2):314-37. https://doi.org/10.7705/biomedica.5853

González-Manrique G, Motta O, Ramírez C, Peña L. Oftalmoplejía asociada a neurotoxicidad por veneno de serpiente: presentación de un caso y revisión de la literatura. Acta Neurol Colomb. 2016;32(4):314-9. https://doi.org/10.22379/24224022114

Rodríguez-Vargas A, Vega N, Reyes-Montaño E, Corzo G, Neri-Castro E, Clement H, et al. Intraspecific differences in the venom of Crotalus durissus cumanensis from Colombia. Toxins. 2022;14(8):532. https://doi.org/10.3390/toxins14080532

Huang YK, Chen YC, Liu CC, Cheng HC, Tu AT, Chang KC. Cerebral complications of snakebite envenoming: case studies. Toxins. 2022;14(7):436. https://doi.org/10.3390/toxins14070436

Martínez-Villota VA, Mera-Martínez PF, Portillo-Miño JD. Massive acute ischemic stroke after Bothrops spp. envenomation in southwestern Colombia: case report and literature review. Biomédica. 2022;42(1):9-17. https://doi.org/10.7705/biomedica.6114

Lizarazo J, Patiño R, Lizarazo D, Osorio G. Hemorragia cerebral fatal después de una mordedura de serpiente Bothrops asper en la región del Catatumbo, Colombia. Bioméd. 2020;40(4):609-15. https://doi.org/10.7705/biomedica.5181

Vaucel JA, Larréché S, Paradis C, Courtois A, Pujo JM, Elenga N, et al. French scorpionism (Mainland and Oversea Territories): narrative review of scorpion species, scorpion venom and envenoming management. Toxins. 2022;14(10):719. https://doi.org/10.3390/toxins14100719

Ahmadi S, Knerr JM, Argemi L, Bordon KCF, Pucca MB, Cerni FA, et al. Scorpion venom: detriments and benefits. Biomedicines. 2020;8(5):118. https://doi.org/10.3390/biomedicines8050118

Godoy DA, Badenes R, Seifi S, Salehi S, Seifi A. Neurological and systemic manifestations of severe scorpion envenomation. Cureus. 2021;13(4):e14715. https://doi.org/10.7759/cureus.14715

Santos MSV, Silva CGL, Silva Neto B, Grangeiro Júnior CRP, Lopes VHG, Teixeira Júnior AG, et al. Clinical and epidemiological aspects of scorpionism in the world: a systematic review. Wilderness Environ Med. 2016;27(4):504-18. https://doi.org/10.1016/j.wem.2016.08.003

Reyes-Vega DF, Bermúdez JF, Buitrago-Toro K, Jiménez-Salazar S, Zamora-Suárez A. Aspectos epidemiológicos, clínicos y paraclínicos del accidente escorpiónico en el Hospital Universitario de Neiva, Colombia. Iatreia. 2021;34(4):295-306. https://doi.org/10.17533/udea.iatreia.90

Abroug F, Ouanes-Besbes L, Tilouche N, Elatrous S. Scorpion envenomation: state of the art. Intensive Care Med. 2020;46(3):401-10. https://doi.org/10.1007/s00134-020-05924-8

Estrada-Gómez S, Vargas-Muñoz L, Saldarriaga-Córdoba M, van der Meijden A. MS/MS analysis of four scorpion venoms from Colombia: a descriptive approach. J Venom Anim Toxins Incl Trop Dis. 2021;27:e20200173. https://doi.org/10.1590/1678-9199-JVATITD-2020-0173

Borges A, Graham MR, Cândido DM, Pardal PPO. Amazonian scorpions and scorpionism: integrating toxinological, clinical and phylogenetic data to combat a human health crisis in the world’s most diverse rainforest. J Venom Anim Toxins Incl Trop Dis. 2021;27. https://doi.org/10.1590/1678-9199-JVATITD-2021-0028

Bahloul M, Turki O, Chaari A, Bouaziz M. Incidence, mechanisms and impact outcome of hyperglycaemia in severe scorpion-envenomed patients. Ther Adv Endocrinol Metab. 2018;9(7):199-208. https://doi.org/10.1177/2042018818772779

Natural History Museum Bern. World Spider Catalog [internet]. Naturi Histori Ssches Musseum Bern; 2024 [citado 2024 abr. 26]. http://wsc.nmbe.ch

Vetter RS, V. Stoecker W, Dart RC. Envenomations by widow, recluse, and medically implicated spiders. En: Vogel CW, Seifert S, Tambourgi D, editores. Clinical toxinology in Australia, Europe, and Americas. Dordrecht, Países Bajos: Springer; 2018. p. 379-412. http://link.springer.com/10.1007/978-94-017-7438-3_74

Lopera Londoño C, Vásquez Escobar J, Benjumea Gutiérrez DM, Pardo Montaguth GD. Arañas de Colombia: biología, envenenamiento y potenciales usos terapéuticos de su veneno. Medellín: Imprenta Universidad de Antioquia; 2020. http://bibliotecadigital.udea.edu.co/handle/10495/19232

Gómez-Cardona JP, Gómez-Cabal C. Arañas de importancia clínica-epidemiológica en Colombia. Biosalud. 2019;18(1):108-29. https://doi.org/10.17151/biosa.2019.18.1.9

Korbu S, Olika M, Alemayehu G. Latrodectus envenomation in Ethiopia. Int J Emerg Med. 2024;17(1):1. https://doi.org/10.1186/s12245-023-00576-z

Guo R, Guo G, Wang A, Xu G, Lai R, Jin H. Spider-venom peptides: structure, bioactivity, strategy and research applications. Molecules. 2023;29(1):35. https://doi.org/10.3390/molecules29010035

Pires OR, Fontes W, Castro MS. Recent Insights in Latrodectus (“Black Widow” Spider) Envenomation: Toxins and Their Mechanisms of Action. En: Gopalakrishnakone P, Corzo G, de Lima M, Diego-García E, editores. Spider Venoms. Toxinology. Dordrecht, Países Bajos: Springer; 2016. p. 333-44. http://link.springer.com/10.1007/978-94-007-6389-0_23

Ministerio de Salud de la Nación. Guía de Prevención, Diagnóstico, Tratamiento y Vigilancia Epidemiológica de los Envenenamientos por Arañas. 1.a ed. Buenos Aires, Argentina: Ministerio de Salud de la Nación; 2012. https://ministeriodesalud.cba.gov.ar/wp-content/uploads/2021/07/GUIA-Nacion-envenenamiento-por-aranas.pdf

de Lima ME, Gomes Figueiredo S, Matavel A, Pedrosa Nunes K, Nunes da Silva C, de Marco Almeida F, et al. Phoneutria nigriventer venom and toxins: a review. En: Gopalakrishnakone P, Corzo G, Diego-García E, de Lima M, editores. Spider Venoms. Toxinology. Dordrecht, Países Bajos: Springer; 2016. p. 71-99. https://doi.org/10.1007/978-94-007-6646-4_6-1

Bucaretchi F, Bertani R, De Capitani EM, Hyslop S. Envenomation by wandering spiders (Genus Phoneutria). En: Gopalakrishnakone P, Vogel C, Seifert S, Tambourgi DV, editores. Clinical toxinology in Australia, Europe, and Americas. Toxinology. Dordrecht, Países Bajos: Springer; 2018. p. 101-54. http://dx.doi.org/10.1007/978-94-017-7438-3_63

Fernández Gayubo S, Pujade-Villar J. Clase Insecta - Oden Hymenoptera. Rev IDE@-SEA. 2015;59:1-36. http://sea-entomologia.org/IDE@/revista_59.pdf

Comité de Alergia e Inmunología. Guía de práctica clínica: Alergia a picadura de himenópteros en pediatría: actualización de 2017. Arch Argent Pediatr. 2017;115(supl. 5):S91-8. http://dx.doi.org/10.5546/aap.2017.S91

Pucca MB, Cerni FA, Oliveira IS, Jenkins TP, Argemí L, Sørensen CV, et al. Bee updated: current knowledge on bee venom and bee envenoming therapy. Front Immunol. 2019;10:2090. https://doi.org/10.3389/fimmu.2019.02090

Cavalcante JS, Marques Riciopo P, Marques Pereira AF, Jeronimo BC, Gomes Angstmam D, Carvalhaes Pôssas F, et al. Clinical complications in envenoming by Apis honeybee stings: insights into mechanisms, diagnosis, and pharmacological interventions. Front Immunol. 2024;15:1437413. https://doi.org/10.3389/fimmu.2024.1437413

Barbosa AN, Ferreira RS, Tavares de Carvalho FC, Schuelter-Trevisol F, Bannwart Mendes M, Cavecci Mendonça B, et al. Single-arm, multicenter phase i/ii clinical trial for the treatment of envenomings by massive africanized honey bee stings using the unique apilic antivenom. Front Immunol. 2021;12:653151. https://doi.org/10.3389/fimmu.2021.653151

Schmidt JO. Clinical consequences of toxic envenomations by Hymenoptera. Toxicon. 2018;150:96-104. https://doi.org/10.1016/j.toxicon.2018.05.013

Monteiro de Barros Almeida RA, Toscano Olivo TE, Mendes RP, Sartori Barraviera SRC, Souza LR, Gonçalves Martins J, et al. Africanized honeybee stings: how to treat them. Rev Soc Bras Med Trop. 2011;44(6):755-61. https://doi.org/10.1590/s0037-86822011000600020

Tibballs J. Envenomation by Australian Hymenoptera: ants, bees, and wasps. En: Vogel CW, Seifert S, Tambourgi D, editores. Clinical Toxinology in Australia, Europe, and Americas. Dordrecht, Países Bajos: Springer; 2018. p. 253-77. http://link.springer.com/10.1007/978-94-017-7438-3_69

Pak SC. Chemical Composition of Bee Venom. En: Alvarez-Suarez J, editor. Bee Products - Chemical and Biological Properties. Cham: Springer; 2017. p. 279-85. http://link.springer.com/10.1007/978-3-319-59689-1_13

Castagnoli R, Giovannini M, Mori F, Barni S, Pecoraro L, Arasi S, et al. Unusual reactions to Hymenoptera stings: current knowledge and unmet needs in the pediatric population. Front Med. 2021;8:717290. https://doi.org/10.3389/fmed.2021.717290

Simons FE. Anaphylaxis. J Allergy Clin Immunol. 2010;125(supl. 2):S161-81. https://doi.org/10.1016/j.jaci.2009.12.981

Dribin TE, Motosue MS, Campbell RL. Overview of allergy and anaphylaxis. Emerg Med Clin North Am. 2022;40(1):1-17. https://doi.org/10.1016/j.emc.2021.08.007

Cardona V, Ansotegui IJ, Ebisawa M, El-Gamal Y, Fernandez Rivas M, Fineman S, et al. World Allergy Organ J. 2020;13(10):100472. https://doi.org/10.1016/j.waojou.2020.100472

da Silva Junior GB, Vasconcelos Junior AG, Timbó Rocha AM, Ribeiro de Vasconcelos VR, de Barros Neto J, Fujishima JS, et al. Acute kidney injury complicating bee stings - a review. Rev Inst Med Trop Sao Paulo. 2017;59:e25. https://doi.org/10.1590/s1678-9946201759025

Reed HC, Landolt PJ. Chapter 22 - Ants, Wasps, and Bees (Hymenoptera). En: Mullen G, Durden LA, editores. Medical and Veterinary Entomology. 3.a ed. Elsevier; 2019. p. 459-88. https://doi.org/10.1016/B978-0-12-814043-7.00022-4

Clercq PD. Predatory Stink Bugs (Hemiptera: Pentatomidae, Aspinae). En: Capinera JL, editor. Encyclopedia of Entomology. 2.a ed. Dordrecht, Países Bajos: Springer; 2008. p. 4137-53. http://link.springer.com/10.1007/978-1-4020-6359-6_3115

Bowles D, Swaby J, Harlan H, editores. Ants; bees; wasps and hornets (Order Hymenoptera). En: Bowles D, Swaby J, Harlan H, editores. Guide to Venomous and Medically Important Invertebrates. Clayton South, Australia: CSIRO Publishing; 2018. p. 107-21.

Yu F, Wang L, Yuan H, Gao Z, He L, Hu F. Wasp venom-induced acute kidney injury: current progress and prospects. Ren Fail. 2023;45(2):2259230. https://doi.org/10.1080/0886022x.2023.2259230

Gong J, Yuan H, Gao Z, Hu F. Wasp venom and acute kidney injury: The mechanisms and therapeutic role of renal replacement therapy. Toxicon. 2019;163:1-7. https://doi.org/10.1016/j.toxicon.2019.03.008

Ruwanpathirana P, Priyankara D. Clinical manifestations of wasp stings: a case report and a review of literature. Trop Med Health. 2022;50(1):82. https://doi.org/10.1186/s41182-022-00475-8

Lu J, Dong L, Zhang L, Guo Y, Liu H, Liu Y. Analysis of risk factors for acute kidney injury in children with severe wasp stings. Pediatr Nephrol. 2024;39(6):1927-35. https://doi.org/10.1007/s00467-023-06265-6

Ou WF, Huang WH, Chiu HF, Mao YC, Wen MC, Chen CH, et al. Clinical manifestation of multiple wasp stings with details of whole transcriptome analysis. Medicine. 2021;100(4):e24492. https://doi.org/10.1097/MD.0000000000024492

Sahiner UM, Durham SR. Hymenoptera venom allergy: how does venom immunotherapy prevent anaphylaxis from bee and wasp stings? Front Immunol. 2019;10:1959. https://doi.org/10.3389/fimmu.2019.01959

Chand P. Chapter 42 - Marine Envenomations. En: Dobbs MR, editor. Clinical neurotoxicology: syndromes, substances, environments. 1.a ed. Elsevier; 2009. p. 454-62. https://doi.org/10.1016/B978-032305260-3.50048-4

Barceloux DG. Jellyfish, Hydroids, Sea Anemones and Corals (Phylum: Cnidaria). En: Barceloux DG, editor. Medical Toxicology of Natural Substances: food, fungi, medicinal herbs, plants, and venomous animals. Hoboken, New Jersey: Wiley; 2008. p. 1085-101. https://doi.org/10.1002/9780470330319.ch179

Kong EL, Nappe TM. Irukandji syndrome. En: StatPearls [internet]. Treasure Island, Florida: StatPearls Publishing; 2023. https://www.ncbi.nlm.nih.gov/books/NBK562264/

Tan Shau Hwai A, Khaldun Ismail A, Miyake H, Karunarathne KD, Ab Razak MN, Nilamani N, et al. General management guide for harmful jellyfish stings in the Western Pacific and adjacent areas. Kuala Lumpur, Malasia: Malaysian Society on Toxinology; 2022.

Hifumi T, Fukuchi Y, Otani N. Marine Envenomation. SN Compr Clin Med. 2020;2:2288-92. https://doi.org/10.1007/s42399-020-00490-y

Brush E. Marine Envenomations. En: Hoffman RS, Howland MA, Lewin NA, Nelson LS, Goldfrank LR, editores. Goldfrank´s Toxicology Emergencies. 11.a ed. McGraw-Hill; 2019. p. 1567-80.

Mathis S, Carla L, Duval F, Nadal L, Solé G, Le Masson G. Acute peripheral neuropathy following animal envenomation: A case report and systematic review. J Neurol Sci. 2022;442:120448. https://doi.org/10.1016/j.jns.2022.120448

Katikou P, Gokbulut C, Kosker AR, Campàs M, Ozogul F. An updated review of tetrodotoxin and its peculiarities. Mar Drugs. 2022;20(1):47. https://doi.org/10.3390/md20010047

Bane V, Lehane M, Dikshit M, O’Riordan A, Furey A. Tetrodotoxin: chemistry, toxicity, source, distribution and detection. Toxins. 2014;6(2):693-755. https://doi.org/10.3390/toxins6020693

Lago J, Rodriguez LP, Blanco L, Vieites JM, Cabado AG. Tetrodotoxin, an extremely potent marine neurotoxin: distribution, toxicity, origin and therapeutical uses. Mar Drugs. 2015;13(10):6384-406. https://doi.org/10.3390/md13106384

Gestal Otero J. Epidemiology of Marine Toxins. En: Botana L, editor. Seafood and Freshwater Toxins: Pharmacology, Physiology, and Detection. Taylor & Francis Group; 2014. p. 123-95.

Barceloux D. Chapter 34. Puffer fish poisoning and tetrodotoxin. En: En: Barceloux DG, editor. Medical Toxicology of Natural Substances: food, fungi, medicinal herbs, plants, and venomous animals. Hoboken, New Jersey: Wiley; 2008. p. 247-52. https://onlinelibrary.wiley.com/doi/10.1002/9780470330319.ch34

Alhatali B, Al Lawatia S, Khamis F, Kantur S, Al-Abri S, Kapil V, et al. A cluster of tetrodotoxin poisoning in Oman. Clin Toxicol. 2022;60(2):262-6. https://doi.org/10.1080/15563650.2021.1917595

Silberman J, Galuska M, Taylor A. Activated charcoal. En: StatPearls [internet]. Treasure Island, Florida: StatPearls Publishing; 2023. https://www.ncbi.nlm.nih.gov/books/NBK482294/

Ghannoum M, Roberts DM. Management of poisonings and intoxications. Clin J Am Soc Nephrol. 2023;18(9):1210-21. https://doi.org/10.2215/cjn.0000000000000057

Fil LJ, Tunik MG. Food Poisoning. En: Hoffman RS, Howland MA, Lewin NA, Nelson LS, Goldfrank LR, editores. Goldfrank´s Toxicology Emergencies. 11.a ed. McGraw-Hill; 2019. p. 592-605.

Halsted BW. Fish Toxins. En: Hui Y, editor. Foodborne Disease Handbook. 2.a ed. Boca Raton, Florida: CRC Press; 2018. p. 23-50. https://doi.org/10.1201/9781351072113

Watters MR. Chapter 41. Seafood Neurotoxins II: Other Ingestible Marine Biotoxins—Ciguatera, Tetrodotoxin, Cyanotoxins. En: Dobbs MR, editor. Clinical neurotoxicology: syndromes, substances, environments. Elsevier; 2009. p. 448-53. https://doi.org/10.1016/B978-032305260-3.50047-2

Barceloux D. Ciguatera fish poisoning and ciguatoxins. En: Barceloux DG, editor. Medical Toxicology of Natural Substances: food, fungi, medicinal herbs, plants, and venomous animals. Hoboken, New Jersey: Wiley; 2008. p. 238-46. https://doi.org/10.1002/9780470330319.ch33

Chand P. Chapter 40. Seafood Neurotoxins I: Shellfish Poisoning and the Nervous System. En: Dobbs M, editor. Clinical Neurotoxicology: Syndromes, Substances, Environments. 1.a ed. Elsevier; 2009. p. 441-7.

Haddad V. Ingestion of venomous aquatic animals: toxinology, clinical aspects and treatment. En: Medical Emergencies Caused by Aquatic Animals. Cham: Springer; 2021. p. 301-34. https://doi.org/10.1007/978-3-319-20288-4_4

Stonik V, Stonik I. Toxins produced by marine invertebrate and vertebrate animals: a short review. En: Gopalakrishnakone P, Haddad V, Kem WR, Tubaro A, Kim E, editores. Marine and freshwater toxins. Dordrecht, Países Bajos: Springer; 2014. https://doi.org/10.1007/978-94-007-6650-1_5-1

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Descargas

Los datos de descargas todavía no están disponibles.