Abstract
Autoscopy, from Greek autos (self) and skopeo (looking at), are complex hallucinations wherein the patient feels a visual duplication of his body. The current paper presents some brain connectivity correlates, obtained from resting state functional magnetic resonance, in a patient with refractory epilepsy who suffers autoscopic hallucinations during her seizures.
Introduce the functional neuroimaging findings in a patient with autoscopic hallucinations.
As part of the evaluation protocol for patients with refractory epilepsy, electroencephalographic video monitoring, positron emission tomography and resting state functional magnetic resonance imaging, were done to a patient that suffers autoscopic hallucinations during her crisis. The information obtained from those studies are correlated with clinical information.
In the patient, the positron emision tomography and the electroencephalographic video monitoring study indicate an injury in the right occipital lobe, findings that coincide with previous literature report about autoscopy. The neuronal synchronization, measured by functional resonance, is abnormal in the same region where is altered the positron emision tomography imaging, enabling to relate the autoscopy phenomena with brain connectivity alterations. The patient has clinical features of autoscopic hallucination. MRI indicates areas with altered brain dynamics in the case of the patient coincide with regions reported in the literature. This study provides evidence on the role of neuronal synchronization mechanisms and the perception of hallucinations.
References
HEYDRICH L, BLANKE O. Distinct illusory own-body perceptions caused by damage to posterior insula and extrastriate cortex. Brain 2013;136:790-803.
ANZELLOTTI F, ONOFRJ V, MARUOTTI V, RICCIARDI L, FRANCIOTTI R, BONANNI L, ET AL. Autoscopic phenomena: case report and review of literature. Behavioral and brain functions: BBF; 2011. p. 2.
VARELA F, LACHAUX JP, RODRÍGUEZ E, MARTINERIE J. The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci [Internet] 2001 Apr; 2(4):229-39. Disponible en: http://dx.doi.org/10.1038/35067550 [Última consulta: marzo 4 de 2013].
UHLHAAS PJ, SINGER W. Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron [Internet] 2006 Oct 5;52(1):155-68. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/ 17015233 [Última consulta: julio 9 de 2014].
SEPULCRE J, SABUNCU MR, JOHNSON KA. Network assemblies in the functional brain. Curr Opin Neurol [Internet] 2012 Aug];25(4):384-91. Disponible en: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3471530&tool=pmcentrez&rendertype=abstract [Última consulta: marzo 2 de 2015].
BASSETT DS, BULLMORE ET. Human brain networks in health and disease. Curr Opin Neurol [Internet] 2009 Aug;22(4):340-7. Disponible en: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2902726&tool=pmcentrez&rendertype=abstract [Última consulta: enero 15 de 2015].
LEERGAARD TB, HILGETAG CC, SPORNS O. Mapping the connectome: multi-level analysis of brain connectivity. Front Neuroinform [Internet] 2012 Jan;6:14. Disponible en: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3340894&tool=pmcentrez&rendertype=abstract [Última consulta: marzo 2 de 2015].
ENGEL AK, KÖNIG P, KREITER AK, SINGER W. Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex. Science 1991;252:1177-9.
FRIES P, WOMELSDORF T, OOSTENVELD R, DESIMONE R. The effects of visual stimulation and selective visual attention on rhythmic neuronal synchronization in macaque area V4. J Neurosci 2008;28:4823-35.
KREITER AK, SINGER W. Oscillatory Neuronal Responses in the Visual Cortex of the Awake Macaque Monkey. Eur J Neurosci; 1992. p. 369-75.
ECKHORN R. Oscillatory and non-oscillatory synchronizations in the visual cortex and their possible roles in associations of visual features. Prog Brain Res. 1994;102:405-26.
BANDETTINI PA, WONG EC, HINKS RS, TIKOFSKY RS, HYDE JS. Time course EPI of human brain function during task activation. Magn Reson Med. 1992;25:390-7.
OGAWA S, TANK DW, MENON R, ELLERMANN JM, KIM SG, MERKLE H, ET AL. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 1992;89:5951-5.
BUXTON RB, WONG EC, FRANK LR. Dynamics of blood flow and oxygenation changes during brain activation: The balloon model. Magn Reson Med. 1998;39:855-64.
FOX PT, RAICHLE ME. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci USA 1986;83:1140-4.
MARGULIES DS, BÖTTGER J, LONG X, LV Y, KELLY C, SCHÄFER A, ET AL. Resting developments: a review of fMRI post-processing methodologies for spontaneous brain activity. Magma 2010 Dec;23(5-6):289-307.
PROAL E, ÁLVAREZ-SEGURA M, DE LA IGLESIA-VAYA M, MARTI-BONMATI L, CASTELLANOS FX, SPANISH RESTING STATE N. Functional cerebral activity in a state of rest: connectivity networks. Rev Neurol. 2011;52(Suppl 1):S3-10.
SEGALL JM, ALLEN EA, JUNG RE, ERHARDT EB, ARJA SK, KIEHL K, ET AL. Correspondence between structure and function in the human brain at rest. Front Neuroinform [Internet] 2012 Jan;6:10. Disponible en: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3313067&tool=pmcentrez&rendertype=abstract [Última consulta: febrero 9 de 2015].
WANG K, JIANG T, YU C, TIAN L, LI J, LIU Y, ET AL. Spontaneous activity associated with primary visual cortex: A resting-state fMRI study. Cereb Cortex 2008;18:697-704.
ALLEN EA, ERHARDT EB, DAMARAJU E, GRUNER W, SEGALL JM, SILVA RF, ET AL. A baseline for the multivariate comparison of resting-state networks. Front Syst Neurosci [Internet]. Frontiers; 2011 Jan 4;5:2. Disponible en: http://www.frontiersin.org/Systems_Neuroscience/10.3389/fnsys.2011.00002/full [Última consulta: marzo 3 de 2013].
BIANCIARDI M, FUKUNAGA M, VAN GELDEREN P, HOROVITZ SG, DE ZWART JA, DUYN JH. Modulation of spontaneous fMRI activity in human visual cortex by behavioral state. Neuroimage 2009;45:160-8.
YANG H, LONG XY, YANG Y, YAN H, ZHU CZ, ZHOU XP, ET AL. Amplitude of low frequency fluctuation within visual areas revealed by resting-state functional MRI. Neuroimage 2007;36:144-52.
BENTLEY WJ, LI JM, SNYDER AZ, RAICHLE ME, SNYDER LH. Oxygen Level and LFP in Task-Positive and Task-Negative Areas: Bridging BOLD fMRI and Electrophysiology. Cereb Cortex 2014 Nov.
BECKMANN CF, DELUCA M, DEVLIN JT, SMITH SM. Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci [Internet] 2005 May 29:1001-13. Disponible en: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1854918&tool=pmcentrez&rendertype=abstract [Última consulta: marzo 19 de 2014].
ASCENCIO JL, OCHOA JF. Evaluación de la conectividad cerebral mediante teoría de grafos. Rev Colomb Radiol. 2013;24(1):3648-53.
MAILLARD L, VIGNAL JP, ANXIONNAT R, TAILLANDIER L, VESPIGNANI H. Semiologic Value of Ictal Autoscopy. Epilepsia 2004;45:391-4.
ZAMBONI G, BUDRIESI C, NICHELLI P. "Seeing oneself": A case of autoscopy. Neurocase?: case studies in neuropsychology, neuropsychiatry, and behavioural neurology; 2005. p. 212-5.
BLANKE O, BROOKS A, MERCIER M, SPINELLI L, ADRIANI M, LAVANCHY L, ET AL. Distinct mechanisms of form-from-motion perception in human extrastriate cortex. Neuropsychologia 2007;45:644-53.
BLANKE O, MOHR C. Out-of-body experience, heautoscopy, and autoscopic hallucination of neurological origin Implications for neurocognitive mechanisms of corporeal awareness and self-consciousness. Brain Res Brain Res Rev [Internet] 2005 Dec 1;50(1):184-99. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/16019077 [Última consulta: diciembre 8 de 2014].
BABILONI C, VECCHIO F, MIRIELLO M, ROMANI GL, ROSSINI PM. Visuo-spatial consciousness and parieto-occipital areas: A high-resolution EEG study. Cereb Cortex 2006;16:37-46.
POLLEN DA. Fundamental requirements for primary visual perception. Cerebral Cortex 2008; p. 1991-8.
BENICZKY S, KÉRI S, VÖRÖS E, UNGUREÁN A, BENEDEK G, JANKA Z, ET AL. Complex hallucinations following occipital lobe damage. Eur J Neurol [Internet] 2002 Mar;9(2):175-6. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/11882059 [Última consulta: marzo 3 de 2015].
UDDIN LQ, KAPLAN JT, MOLNAR-SZAKACS I, ZAIDEL E, IACOBONI M. Self-face recognition activates a frontoparietal "mirror" network in the right hemisphere: An event-related fMRI study. Neuroimage 2005;25:926-35.
HODZIC A, KAAS A, MUCKLI L, STIRN A, SINGER W. Distinct cortical networks for the detection and identification of human body. Neuroimage 2009;45:1264-71.
VALE TC, FERNANDES LC, CARAMELLI P. Charles Bonnet syndrome: characteristics of its visual hallucinations and differential diagnosis. Arq Neuropsiquiatr [Internet]. Associação Arquivos de Neuro-Psiquiatria 2014 May;72(5):333-6. [Última consulta: marzo 15 de 2015]. Disponible en: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0004-282X2014000500333&lng=en&nrm=iso&tlng=en.
KAZUI H, ISHII R, YOSHIDA T, IKEZAWA K, TAKAYA M, TOKUNAGA H, ET AL. Neuroimaging studies in patients with Charles Bonnet Syndrome. Psychogeriatrics [Internet] 2009 Jun;9(2):77-84. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/19604330 [Última consulta: marzo 15 de 2015].
ALLEN P, LARØI F, MCGUIRE PK, ALEMAN A. The hallucinating brain: a review of structural and functional neuroimaging studies of hallucinations. Neurosci Biobehav Rev [Internet] 2008 Jan;32(1):175-91. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/17884165 [Última consulta: septiembre 24 de 2014].
SACKS O. "Doppelgängers": alucinaciones de uno mismo. En: Sacks O. Alucinaciones. ANAGRAMA; 2013. 343.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.