Glymphatic system: Anatomo-physiological principles and their clinical implications
PDF (Español)
XML (Español)

Keywords

Acquaporin 4
Astrocytes
Perivascular spaces
Homeostasis
Cerebrospinal fluid
Glymphatic system

Abstract

Introduction: The glympathic system comprises the set of perivascular routes, arterials or venous, that are found in close relationship with astroglial cells and allow interaction between the cerebrospinal fluid (CSF) and the interstitial brain fluid (ISF), to carry processes like cell-wasting metabolites depuration, nutrients distribution, as well as make a contribution in the local brain metabolism, volumen transmition and brain paracrine signaling.

Contents: This article seeks to deepen in the anatomical and physiological concepts, so far described, about this macroscopic transport system. A bibliographic search of reviews and experimental studies on the anatomy, physiology and pathophysiological implications of the glymphatic system is carried out.

Conclusions: Anatomical and functional identification of glympathic system has broaden the knowledge about regulation of brain metabolism on the nutrients distribution and cell signaling cascades. When setting an interaction between the subarachnoid space and the brain interstitial space, the glymphatic system arise as one of the leading mechanisms of brain homeostasis. Disfunction of this pathway makes part of the patophysiological mechanisms of multiple neurological disease, either be by collection of macromolecules as in Alzheimer’s disease, or by the reduction of inflammatory cytokines and chemical substances drainage as in migraine or traumatic brain injury (TBI).

https://doi.org/10.22379/anc.v39i2.835
PDF (Español)
XML (Español)

References

Tamura R, Yoshida K, Toda M. Current understanding of lymphatic vessels in the central nervous system. Neurosurg Rev. 2020;43(4):1055-64. https://doi.org/10.1007/s10143-019-01133-0

Plog BA, Nedergaard M. The glymphatic system in central nervous system health and disease: past, present, and future. Annu Rev Pathol. 2018;13:379-94. https://doi.org/10.1146/annurev-pathol-051217-111018

Mesquita S Da, Fu Z, Kipnis J. Perspective the meningeal lymphatic system?: a new player in neurophysiology. Neuron. 2018;100(2):375-88. https://doi.org/10.1016/j.neuron.2018.09.022

Li J, Zhou J, Shi Y. Scanning electron microscopy of human cerebral meningeal stomata. Ann Anat. 1996;178(3):259-61. https://doi.org/10.1016/S0940-9602(96)80059-8

Louveau A, Harris TH, Kipnis J. Revisiting the concept of CNS immune privilege. Trends Immunol. 2015;36(10):569-77. https://doi.org/10.1016/j.it.2015.08.006

Wardlaw JM, Mestre H, Lee H, Doubal FN, Brown R, Ramirez J, et al. Perivascular spaces in the brain: anatomy, physiology and pathology. Nat Rev Neurol. 2020;3:137-53. https://doi.org/10.1038/s41582-020-0312-z

Cserr HF, Cooper DN, Milhorat TH. Flow of cerebral interstitial fluid as indicated by the removal of extracellular markers from rat caudate nucleus. Exp Eye Res. 1977;25:461-73. https://doi.org/10.1016/S0014-4835(77)80041-9

Rennels ML, Gregory TF, Blaumanis OR, Fujimoto K, Grady PA. Evidence for a 'paravascular' fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res. 1985;326(1):47-63. https://doi.org/10.1016/0006-8993(85)91383-6

Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A Paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid ?. Sci Transl Med. 2012;4:147. https://doi.org/10.1126/scitranslmed.3003748

Benveniste H, Lee H, Volkow ND. The glymphatic pathway: waste removal from the CNS via cerebrospinal fluid transport. Neuroscientist. 2017;23(5):454-65. https://doi.org/10.1177/1073858417691030

Mollgard K, Binlich F, Kusk P. A mesotelial divides the subarachnoid space into functional compartments. Science. 2023;379:84-8. https://doi.org/10.1126/science.adc8810

Shapey J, Toma A, Saeed SR. Physiology of cerebrospinal fluid circulation. Curr Opin Otolaryngol Head Neck Surg. 2019;27(5):326-33. https://doi.org/10.1097/MOO.0000000000000576

Jessen NA. The glymphatic system?: a beginner's guide. Neurochem Res. 2015;12:2583-99. https://doi.org/10.1007/s11064-015-1581-6

Rasmussen MK, Mestre H, Nedergaard M. The glymphatic pathway in neurological disorders. Lancet Neurol. 2018;17(11):1016-24. https://doi.org/10.1016/S1474-4422(18)30318-1

Iliff JJ, Nedergaard M. Is there a cerebral lymphatic system? Stroke. 2013;44(6):S93-5. https://doi.org/10.1161/STROKEAHA.112.678698

Troili F, Cipollini V, Moci M, Morena E, Palotai M, Rinaldi V, et al. Perivascular unit: this must be the place. The anatomical crossroad between the immune, vascular and nervous system. Front Neuroanat. 2020;14:17. https://doi.org/10.3389/fnana.2020.00017

Thrane AS, Thrane VR, Nedergaard M. Drowning stars: reassessing the role of astrocytes in brain edema. Trends Neurosci. 2014;37(11):620-8. https://doi.org/10.1016/j.tins.2014.08.010

Muoio V, Persson PB, Sendeski MM. The neurovascular unit - concept review. Acta Physiol. 2014;210(4):790-8. https://doi.org/10.1111/apha.12250

Papadopoulos MC, Verkman AS. Aquaporin water channels in the nervous system. Nat Rev Neurosci. 2013;14(4):265-77. https://doi.org/10.1038/nrn3468

Nagelhus EA, Ottersen OP. Physiological roles of aquaporin-4 in brain. Physiol Rev. 2013;93(4):1543-62. https://doi.org/10.1152/physrev.00011.2013

Mcconnell HL, Kersch CN, Woltjer RL, Neuwelt EA. The translational significance of the neurovascular unit. J Biol Chem. 2017;292(3):762-70. https://doi.org/10.1074/jbc.R116.760215

Louveau A, Plog BA, Antila S, Alitalo K, Nedergaard M, Kipnis J. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. J Clin Invest. 2017;127(9):3210-9. https://doi.org/10.1172/JCI90603

Mestre H, Mori Y, Nedergaard M. The brain's glymphatic system: current ontroversies. Trends Neurosci. 2020;43(7):458-66. https://doi.org/10.1016/j.tins.2020.04.003

Pollay M, Welch K. The function and structure of canine arachnoid villi. J Surg Res. 1962;2:307-11. https://doi.org/10.1016/S0022-4804(62)80039-0

Johnston M, Zakharov A, Papaiconomou C, Salmasi G, Armstrong D. Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res. 2004;1:2. https://doi.org/10.1186/1743-8454-1-2

Ghersi-Egea J-F, Strazielle N, Catala M, Silva-Vargas V, Fiona D, Engelhardt B. Molecular anatomy and functions of the choroidal blood ? cerebrospinal fluid barrier in health and disease. Acta Neuropathol. 2018;135(3):337?61. https://doi.org/10.1007/s00401-018-1807-1

Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, Detmar M, et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med. 2015;212(7):991-9. https://doi.org/10.1084/jem.20142290

Raper D, Louveau A, Kipnis J. How do meningeal lymphatic vessels drain the CNS? Trends Neurosci. 2016;39(9):581-6. https://doi.org/10.1016/j.tins.2016.07.001

Kiviniemi V, Wang X, Korhonen V, Keinänen T, Tuovinen T, Autio J, et al. Ultra-fast magnetic resonance encephalography of physiological brain activity - Glymphatic pulsation mechanisms?? J Cereb Blood Flow Metab. 2016;36(6):1033-45. https://doi.org/10.1177/0271678X15622047

Iliff JJ, Wang M, Zeppenfeld DM, Venkataraman A, Plog BA, Liao Y, et al. Cerebral arterial pulsation drives paravascular CSF - interstitial fluid exchange in the murine brain. J Neurosci. 2013;33(46):18190-9. https://doi.org/10.1523/JNEUROSCI.1592-13.2013

Benveniste H, Heerdt PM, Fontes M, Rothman DL, Volkow ND. Glymphatic system function in relation to anesthesia and sleep states. Anesth Analg. 2019;128(4):747-58. https://doi.org/10.1213/ANE.0000000000004069

Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, et al. Sleep drives metabolite clearance from the adult brain. Science. 2013;342(6156):373-7. https://doi.org/10.1126/science.1241224

Donnell JO, Zeppenfeld D. Norepinephrine: a neuromodulator that boosts the function of multiple cell types to optimize CNS performance. Neurochem Res. 2012;37(11):2496-512. https://doi.org/10.1007/s11064-012-0818-x

Lundgaard I, Lu ML, Yang E, Peng W, Mestre H, Hitomi E, et al. Glymphatic clearance controls state-dependent changes in brain lactate concentration. J Cereb Blood Flow Metab. 2017;37(6):2112-24. https://doi.org/10.1177/0271678X16661202

Shokri-kojori E, Wang G, Wiers CE, Demiral SB, Guo M, Won S. ? -Amyloid accumulation in the human brain after one night of sleep deprivation. Proc Natl Acad Sci U S A. 2018;115(17):4483-8. https://doi.org/10.1073/pnas.1721694115

Thrane VR, Thrane AS, Plog BA, Thiyagarajan M, Iliff JJ, Deane R, et al. Paravascular microcirculation facilitates rapid lipid transport and astrocyte signaling in the brain. Sci Rep. 2013;3(2582):4-8. https://doi.org/10.1038/srep02582

Kim Y, Nam K Il, Song J. The glymphatic system in diabetes-induced dementia. Front Neurol. 2018;9:867. https://doi.org/10.3389/fneur.2018.00867

Maneshi MM, Maki B, Gnanasambandam R, Belin S, Popescu GK, Sachs F, et al. Mechanical stress activates NMDA receptors in the absence of agonists. Sci Rep. 2017;7:39610. https://doi.org/10.1038/srep39610

Xu Z, Xiao N, Chen Y, Huang H, Marshall C, Gao J, et al. Deletion of aquaporin-4 in APP / PS1 mice exacerbates brain A ? accumulation and memory deficits. Mol Neurodegener. 2015;10:58. https://doi.org/10.1186/s13024-015-0056-1

Burfeind KG, Murchison CF, Westaway SK, Simon MJ, Erten-lyons D, Kaye JA, et al. The effects of noncoding aquaporin-4 single-nucleotide polymorphisms on cognition and functional progression of Alzheimer's disease. Alzheimers Dement. 2017;3(3):348-59. https://doi.org/10.1016/j.trci.2017.05.001

Zeppenfeld DM, Simon M, Haswell JD, Abreo DD, Murchison C, Quinn JF, et al. Association of perivascular localization of aquaporin-4 with cognition and Alzheimer disease in aging brains. JAMA Neurol. 2017;74(1):91-9. https://doi.org/10.1001/jamaneurol.2016.4370

Boespflug EL, Iliff JJ. The emerging relationship between interstitial fluid - cerebrospinal fluid exchange, amyloid- b and sleep. Biol Psychiatry. 2018;83(4):328-36. https://doi.org/10.1016/j.biopsych.2017.11.031

Reeves BC, Karimy JK, Kundishora AJ, Mestre H, Cerci HM, Matouk C, et al. Glymphatic system impairment in Alzheimer's disease and idiopathic normal pressure hydrocephalus. Trends Mol Med. 2020;26(3):285-95. https://doi.org/10.1016/j.molmed.2019.11.008

Hershenhouse KS, Shauly O, Gould DJ, Patel KM. Meningeal lymphatics?: a review and future directions from a clinical perspective. Neurosci Insights. 2019;14:1179069519889027. https://doi.org/10.1177/1179069519889027

Noseda R, Burstein R. Migraine pathophysiology: Anatomy of the trigeminovascular pathway and associated neurological symptoms, cortical spreading depression, sensitization, and modulation of pain. Pain. 2013;154(1):S44-53. https://doi.org/10.1016/j.pain.2013.07.021

Betancourt A, Sobrino F. Onda de depresión cortical. En: Sobrino F, editor. Bases genéticas y fisiopatológicas de la migraña. Bogotá: Asociación Colombiana de Neurología; 2017. p. 63-77.

Lauritzen M, Strong AJ. Spreading depression of Leão' and its emerging relevance to acute brain injury in humans. J Cereb Blood Flow Metab. 2017;37(5):1553-70. https://doi.org/10.1177/0271678X16657092

Kosaras B, Jakubowski M, Kainz V, Burstein R. Sensory innervation of the calvarial bones of the mouse. J Comp Neurol. 2009;515(3):331-48. https://doi.org/10.1002/cne.22049

Schain XAJ, Melo-carrillo A, Strassman AM, Burstein R. Cortical Spreading depression closes paravascular space and impairs glymphatic flow?: implications for migraine headache. J Neurosci. 2017;37(11):2904-15. https://doi.org/10.1523/JNEUROSCI.3390-16.2017

Piantino J, Lim MM, Newgard CD, Iliff J. Linking traumatic brain injury, sleep disruption and post-traumatic headache?: a potential role for glymphatic pathway dysfunction. Curr Pain Headache Rep. 2019;23(9):62. https://doi.org/10.1007/s11916-019-0799-4

Gaberel T, Gakuba C, Goulay R, Martinez De Lizarrondo S, Hanouz J-L, Emery E, et al. Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI. A new target for fibrinolysis? Stroke. 2014;45(10):3092-6. https://doi.org/10.1161/STROKEAHA.114.006617

Gabbita SP, Scheff SW, Menard RM, Roberts K, Fugaccia I, Zemlan FP. Cleaved-tau: a biomarker of neuronal damage after traumatic brain injury. J Neurotrauma. 2005;22(1):83-94. https://doi.org/10.1089/neu.2005.22.83

Kostyun RO, Milewski MD, Hafeez I, Kostyun RO, Milewski MD, Hafeez I. Sleep disturbance and neurocognitive function during the recovery from a concussion in adolescents. Am J Sport Med. 2015;43(3):633-40. https://doi.org/10.1177/0363546514560727

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Downloads

Download data is not yet available.