Resumen
Introducción: con la experiencia de los registros electroencefalográficos invasivos y el fracaso quirúrgico después de la cirugía, se ha hecho evidente que la epilepsia del lóbulo temporal es mucho más compleja de lo que se creía, y en la actualidad es considerada una enfermedad de redes anatomofuncionales y no de lesiones estructurales.
Contenido: la información neurofisiológica e imagenológica actual permite concluir que en esta epilepsia están involucradas varias redes neuronales temporales y extratemporales que contribuyen a la extensión de la zona epileptógena. Una forma de entender el concepto de red epiléptica en la epilepsia del lóbulo temporal es a partir del conocimiento de la corteza piriforme. Varios estudios clínicos han mostrado que en pacientes con epilepsia del lóbulo temporal asociada a esclerosis hipocampal existe una disfunción interictal del procesamiento olfatorio que es más significativa, en comparación con pacientes con epilepsia focal extrahipocampal y controles sanos. Esta alteración es, probablemente, la consecuencia de una red neuronal disfuncional que se extiende más allá del hipocampo y que afecta a otras estructuras cercanas, incluida la corteza piriforme.
Conclusión: en este artículo llevamos a cabo una revisión narrativa de la literatura con el objetivo de establecer un vínculo entre la corteza piriforme y la epileptogénesis del lóbulo temporal, y demostramos que esta enfermedad es la consecuencia de una disfunción de redes neuronales que no depende exclusivamente de una anormalidad estructural en el hipocampo o en estructuras cercanas.
Citas
Ioannou P, Foster DL, Sander JW, Dupont S, Gil-Nagel A, Drogon O'Flaherty E, et al. The burden of epilepsy and unmet need in people with focal seizures. Brain Behav. 2022;12: e2589. https://doi.org/10.1002/brb3.2589
González Otárula KA, Schuele S. Networks in temporal lobe epilepsy. Neurosurg Clin N Am. 2020; 31:309-17. https://doi.org/10.1016/j.nec.2020.02.001
Bartolomei F, Lagarde S, Wendling F, McGonigal A, Jirsa V, Guye M, et al. Defining epileptogenic networks: Contribution of SEEG and signal analysis. Epilepsia. 2017;58: 1131-47. https://doi.org/10.1111/epi.13791
Bonilha L, Martz GU, Glazier SS, Edwards JC. Subtypes of medial temporal lobe epilepsy: influence on temporal lobectomy outcomes? Epilepsia. 2012;53:1-6. https://doi.org/10.1111/j.1528-1167.2011.03298.x
Spencer SS. Neural networks in human epilepsy: evidence of and implications for treatment. Epilepsia. 2002;43:219-27. https://doi.org/10.1046/j.1528-1157.2002.26901.x
Sala-Padro J, Miró J, Rodriguez-Fornells A, Rifa-Ros X, Plans G, Santurino M, et al. Mapping connectivity fingerprints for presurgical evaluation of temporal lobe epilepsy. BMC Neurol. 2021;21:442. https://doi.org/10.1186/s12883-021-02469-1
Vismer MS, Forcelli PA, Skopin MD, Gale K, Koubeissi MZ. The piriform, perirhinal, and entorhinal cortex in seizure generation. Front Neural Circuits. 2015;9:27. https://doi.org/10.3389/fncir.2015.00027
de Curtis M, Librizzi L, Uva L. Limbic and olfactory cortical circuits in focal seizures. Neurobiol Dis. 2023;178:106007. https://doi.org/10.1016/j.nbd.2023.106007
Cheng H, Wang Y, Chen J, Chen Z. The piriform cortex in epilepsy: What we learn from the kindling model. Exp Neurol. 2020;324:113137. https://doi.org/10.1016/j.expneurol.2019.113137
Espinosa-Jovel C, Toledano R, Jiménez-Huete A, Aledo-Serrano Á, García-Morales I, Campo P, et al. Olfactory function in focal epilepsies: Understanding mesial temporal lobe epilepsy beyond the hippocampus. Epilepsia Open. 2019;4:487-92. https://doi.org/10.1002/epi4.12343
Vaughan DN, Jackson GD. The piriform cortex and human focal epilepsy. Front Neurol. 2014;5:259. https://doi.org/10.3389/fneur.2014.00259
Young JC, Vaughan DN, Nasser HM, Jackson GD. Anatomical imaging of the piriform cortex in epilepsy. Exp Neurol. 2019;320:113013. https://doi.org/10.1016/j.expneurol.2019.113013
Löscher W, Ebert U. The role of the piriform cortex in kindling. Prog Neurobiol. 1996;50: 427-81. https://doi.org/10.1016/S0301-0082(96)00036-6
Klingler E. Development and organization of the evolutionarily conserved three-layered olfactory cortex. eNeuro. 2017;4:ENEURO.0193-16.2016. https://doi.org/10.1523/ENEURO.0193-16.2016
Li D, Luo D, Wang J, Wang W, Yuan Z, Xing Y, et al. Electrical stimulation of the endopiriform nucleus attenuates epilepsy in rats by network modulation. Ann Clin Transl Neurol. 2020;7:2356-69. https://doi.org/10.1002/acn3.51214
Suzuki N, Bekkers JM. Neural coding by two classes of principal cells in the mouse piriform cortex. J Neurosci. 2006;26:11938-47. https://doi.org/10.1523/JNEUROSCI.3473-06.2006
Ekstrand JJ, Domroese ME, Johnson DM, Feig SL, Knodel SM, Behan M, Haberly LB. A new subdivision of anterior piriform cortex and associated deep nucleus with novel features of interest for olfaction and epilepsy. J Comp Neurol. 2001;434:289-307. https://doi.org/10.1002/cne.1178
Bensafi M. The role of the piriform cortex in human olfactory perception: Insights from functional neuroimaging studies. Chemosens Percept. 2012;5:4-10. https://doi.org/10.1007/s12078-011-9110-8
Zhou G, Lane G, Cooper SL, Kahnt T, Zelano C. Characterizing functional pathways of the human olfactory system. Elife. 2019;8:e47177. https://doi.org/10.7554/eLife.47177
Koepp M, Galovic M. Functional imaging of the piriform cortex in focal epilepsy. Exp Neurol. 2020;330:113305. https://doi.org/10.1016/j.expneurol.2020.113305
McIntyre DC, Kelly ME, Dufresne C. FAST and SLOW amygdala kindling rat strains: comparison of amygdala, hippocampal, piriform and perirhinal cortex kindling. Epilepsy Res. 1999;35:197-209. https://doi.org/10.1016/S0920-1211(99)00012-1
Löscher W, Ebert U, Wahnschaffe U, Rundfeldt C. Susceptibility of different cell layers of the anterior and posterior part of the piriform cortex to electrical stimulation and kindling: comparison with the basolateral amygdala and “area tempestas”. Neuroscience. 1995;66:265-76. https://doi.org/10.1016/0306-4522(94)00614-B
Skopin MD, Bayat A, Kurada L, Siddu M, Joshi S, Zelano CM, et al. Epileptogenesis-induced changes of hippocampal-piriform connectivity. Seizure. 2020;81:1-7. https://doi.org/10.1016/j.seizure.2020.07.008
Haneef Z, Lenartowicz A, Yeh HJ, Levin HS, Engel J Jr, Stern JM. Functional connectivity of hippocampal networks in temporal lobe epilepsy. Epilepsia. 2014;55:137-45. https://doi.org/10.1111/epi.12476
Fahoum F, Lopes R, Pittau F, Dubeau F, Gotman J. Widespread epileptic networks in focal epilepsies: EEG-fMRI study. Epilepsia. 2012;53:1618-27. https://doi.org/10.1111/j.1528-1167.2012.03533.x
Mirandola L, Ballotta D, Talami F, Giovannini G, Pavesi G, Vaudano AE, Meletti S. Temporal lobe spikes affect distant intrinsic connectivity networks. Front Neurol. 2021;12:746468. https://doi.org/10.3389/fneur.2021.746468
Flanagan D, Badawy RA, Jackson GD. EEG-fMRI in focal epilepsy: local activation and regional networks. Clin Neurophysiol. 2014;125:21-31. https://doi.org/10.1016/j.clinph.2013.06.182
Türk BG, Metin B, Tekeli H, Sayman ÖA, K?z?lk?l?ç O, Uzan M, et al. Evaluation of olfactory and gustatory changes in patients with mesial temporal lobe epilepsy. Seizure. 2020;75:110-4. https://doi.org/10.1016/j.seizure.2020.01.001
Galovic M, Baudracco I, Wright-Goff E, Pillajo G, Nachev P, Wandschneider B, et al. Association of piriform cortex resection with surgical outcomes in patients with temporal lobe epilepsy. JAMA Neurol. 2019;76:690-700. https://doi.org/10.1001/jamaneurol.2019.0204
Leon-Rojas JE, Iqbal S, Vos SB, Rodionov R, Miserocchi A, McEvoy AW, et al. Resection of the piriform cortex for temporal lobe epilepsy: a Novel approach on imaging segmentation and surgical application. Br J Neurosurg. 2021,18:1-6. https://doi.org/10.1080/02688697.2021.1966385
Borger V, Hamed M, Bahna M, Rácz Á, Ilic I, Potthoff AL, et al. Temporal lobe epilepsy surgery: Piriform cortex resection impacts seizure control in the long-term. Ann Clin Transl Neurol. 2022; 9:1206-11. https://doi.org/10.1002/acn3.51620
Laufs H, Richardson MP, Salek-Haddadi A, Vollmar C, Duncan JS, Gale K, et al. Converging PET and fMRI evidence for a common area involved in human focal epilepsies. Neurology. 2011;77:904-10. https://doi.org/10.1212/WNL.0b013e31822c90f2
Kang JY, Yenokyan G, Hwang BY, Chen M, Penn R, Mampre D, Sperling MR, Kamath V. Odor identification predicts postoperative seizure control following magnetic resonance-guided laser interstitial thermal therapy. Epilepsia. 2020;61:1949-57. https://doi.org/10.1111/epi.16645
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.